131 research outputs found

    Advanced open-celled structures from low-temperature sintering of a crystallization-resistant bioactive glass

    Get PDF
    Most materials for bone tissue engineering are in form of highly porous open-celled components (porosity > 70%) developed by means of an adequate coupling of formulations and manufacturing technologies. This paper is dedicated to porous components from BGMS10 bioactive glass, originally designed to undergo viscous flow sintering without crystallization, which is generally known to degrade the bioactivity of 45S5 bioglass. The adopted manufacturing technologies were specifically conceived to avoid any contamination and give excellent control on the microstructures by simple operations. More precisely, 'green' components were obtained by digital light processing and direct foaming of glass powders suspended in a photosensitive organic binder or in an aqueous solution, activated with an organic base, respectively. Owing to characteristic quite large sintering window of BGMS10 glass, sintering at 750 \ub0C caused the consolidation of the structures generated at room temperature, without any evidence of viscous collapse

    Human mesenchymal stem cell combined with a new strontium-enriched bioactive glass: An ex-vivo model for Bone Regeneration

    Get PDF
    A 3D cellular model that mimics the potential clinical application of a biomaterial is here applied for the first time to a bioactive glass, in order to assess its biological potential. A recently developed bioactive glass (BGMS10), whose composition contained strontium and magnesium, was produced in the form of granules and fully investigated in terms of biocompatibility in vitro. Apart from standard biological characterization (Simulated Body Fluid (SBF) testing and biocompatibility as per ISO10993), human bone marrow mesenchymal stromal/stem cells (BM-MSCs) were used to investigate the performance of the bioactive glass granules in an innovative 3D cellular model. The results showed that BGMS10 supported human BM-MSCs adhesion, colonization, and bone differentiation. Thus, bioactive glass granules seem to drive osteogenic differentiation and thus look particularly promising for orthopedic applications, bone tissue engineering and regenerative medicine

    Peripapillary Microvascular and Neural Changes in Diabetes Mellitus: An OCT-Angiography Study

    Get PDF
    Purpose: To evaluate peripapillary vessel density and morphology in patients with diabetes mellitus (DM) without clinical signs of diabetic retinopathy (DR) and with mild, nonproliferative DR and to correlate with peripapillary nerve fiber layer (NFL) thickness.Methods: One hundred seventeen eyes (34 healthy controls, 54 patients with DM without DR [noDR group] and 24 patients with mild DR [DR group]) were prospectively evaluated. All subjects underwent peripapillary and macular optical coherence tomography angiography (OCT-A). Peripapillary NFL thickness was also recorded. OCT-A slab of radial peripapillary plexus (RPC) and macular superficial capillary plexus (SCP) were analysed in order to calculate perfusion density (PD) and vessel density (VD). Further an image analysis of RPC slab was performed to identify number of branches (NoB) and total branches length (tBL).Results: In peripapillary area there was a significant decrease in VD (P = 0.003), NoB (P < 0.001), and tBL (P < 0.001) in noDR group versus controls; PD values were not different among groups (P = 0.126); there was a significant decrease in average NFL thickness in DR versus controls (P = 0.008) and in the inferior quadrant in noDR group versus controls (P = 0.03); there was a significant correlation between OCT-A and NFL thickness values (\u3c1 ranging from 0.19-0.57). In macular region PD and VD were decreased only in DR group (P < 0.05).Conclusions: There are early changes in the peripapillary vessel morphology and VD of the RPC in patients with DM without DR that correlate to NFL thinning. Earlier changes in superficial vessel density are documented in the peripapillary than in the macular region. These data may confirm a coexistence of an early neuronal and microvascular damage in patients with DM without clinical signs of DR

    FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    Get PDF
    Background: FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Methods: Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. Results: PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 7 10-4) and CT-CTV (p = 2.9 7 10-4). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 7 10-5) and CT-CTV (p = 6 7 10-5). Conclusions: FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

    Epoxy-silica nanocomposites: Preparation, experimental characterization and modeling

    No full text
    Silica nanoparticles having different sizes were obtained by the sol-gel process and characterized. The prepared nanoparticles were subsequently used as reinforcing fillers to prepare epoxy-based composites with a silica content ranging from I to 5 wt %. SEM analysis and tensile tests carried out on the silica-epoxy nanocomposites indicated the absence of particle aggregation and a reinforcing effect in terms of increased elastic modulus. Mechanical properties were also modeled by using a finite element code able to construct a numerical model from a microstructural image of the material. A more reliable model was prepared by considering the presence of an interphase layer surrounding the particles with intermediate elastic properties between the epoxy and the inclusions and a characteristic size proportional to the particle radius
    • …
    corecore