39 research outputs found

    The genetics of left ventricular noncompaction

    Get PDF
    Purpose of review: This article summarises current understanding of the genetic architecture underpinning left ventricular noncompaction (LVNC) and highlights the difficulty in differentiating LVNC from hypertrabeculation seen in normal, healthy individuals, that caused by physiological adaptation or that seen in association with cardiomyopathy phenotypes. Recent findings: Progress has been made in better defining the LVNC phenotype and those patients who may benefit from genetic testing. Yield of diagnostic genetic testing may be low in the absence of syndromic features, systolic dysfunction and a family history of cardiomyopathy. Sarcomeric gene variants are most commonly identified but a wide-range of genes are implicated, emphasising the high degree of heterogeneity of studied cohorts. Summary: More accurate phenotyping and genotype–phenotype correlation are required to better characterise the genetic architecture of LVNC

    Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants

    Get PDF
    Background: Many intervention studies in preterm infants aim to improve neurodevelopmental outcome, but short-term proxy outcome measurements are lacking. Cortical plate and subplate development could be such a marker. Objective: Our aim was to provide normal DTI reference values for the cortical plate and subplate of preterm infants. Materials and methods: As part of an ongoing study we analysed diffusion tensor imaging (DTI) images of 19 preterm infants without evidence of injury on conventional MRI, with normal outcome (Bayley-II assessed at age 2), and scanned in the first 4 days of life. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the frontal and temporal subplate and cortical plate were measured in single and multiple voxel regions of interest (ROI) placed on predefined regions. Results: Using single-voxel ROIs, statistically significant inverse correlation was found between gestational age (GA) and FA of the frontal (r = -0.5938, P = 0.0058) and temporal (r = -0.4912, P = 0.0327) cortical plate. ADC values had a significant positive correlation with GA in the frontal (r = 0.5427, P = 0.0164) and temporal (r = 0.5540, P = 0.0138) subplate. Conclusion: Diffusion tensor imaging allows in vivo exploration of the evolving cortical plate and subplate. We provide FA and ADC values of the subplate and cortical plate in very-low-birth-weight (VLBW) infants with normal developmental outcome that can be used as reference values

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVE: We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS: We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 ± 19.2 years) recruited from 29 international centers. RESULTS: At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% ± 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of ≀35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS: MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare

    Fetal organ weight estimation by postmortem high-field magnetic resonance imaging before 20 weeks' gestation

    No full text
    Objective To ascertain whether high-field magnetic resonance imaging (MRI) allows accurate estimation of the weight of various fetal organs at postmortem before 20 weeks' gestation. Methods From 23 fetuses at 9-20 weeks, following termination of pregnancy or in-utero fetal death (IUFD), 207 assorted fetal organs were evaluated by high-field MRI at 9.4 T prior to conventional autopsy. Fetal organ density was calculated by correlating volume and weight at autopsy using linear regression analysis, and this was used to estimate fetal organ weight by MRI. The relative error in MRI estimation of organ weight was calculated as follows: (SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe
    corecore