18 research outputs found

    In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator

    Get PDF
    Colistin is one of the few agents that retain activity against extensively drug-resistant strains of Klebsiella pneumoniae producing KPC-type carbapenemases (KPC-KP). However, resistance to colistin is increasingly reported among KPC-KP. Comparative genomic analysis of a pair of sequential KPC-KP isolates from the same patient including a colistin-susceptible isolate (KKBO-1) and a colistin-resistant isolate (KKBO-4) selected after colistin exposure revealed that insertional inactivation of the mgrB gene, encoding a negative regulator of the PhoQ/PhoP signaling system, is a genetic mechanism for acquired colistin resistance. The role of mgrB inactivation in acquired colistin resistance was confirmed by complementation experiments with wild-type mgrB, which restored colistin susceptibility in KKBO-4, and by construction of an mgrB deletion mutant from KKBO-1, which exhibited a colistin-resistant phenotype. Insertional mgrB inactivation was also detected in 60% of colistin-resistant mutants selected from KKBO-1 in vitro, following plating on colistin-containing medium, confirming the role (although not unique) of this mechanism in the emergence of acquired colistin resistance. In colistin-resistant mutants carrying insertional inactivation or deletion of the mgrB gene, upregulated transcription of phoP, phoQ, and pmrK (which is part of the pmrHFIJKLM operon) was detected. These findings confirmed the MgrB regulatory role in K. pneumoniae and were in agreement with the known association between upregulation of the PhoQ/PhoP system and activation of the pmrHFIJKLM operon, which eventually leads to resistance to polymyxins by modification of the lipopolysaccharide target

    CXC chemokines exhibit bactericidal activity against multidrug-resistant gram-negative pathogens

    Get PDF
    The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens

    CXC chemokines exhibit bactericidal activity against multidrug-resistant gram-negative pathogens

    Get PDF
    The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens

    MgrB Inactivation Is a Common Mechanism of Colistin Resistance in KPC-Producing Klebsiella pneumoniae of Clinical Origin

    No full text
    Klebsiella pneumoniae strains producing KPC-type carbapenemases (KPC-KP) are challenging multidrug-resistant pathogens due to their extensively drug-resistant phenotypes and potential for epidemic dissemination in health care settings. Colistin is a key component of the combination antimicrobial regimens used for treatment of severe KPC-KP infections. We previously reported that insertional inactivation of the mgrB gene, encoding a negative-feedback regulator of the PhoQ-PhoP signaling system, can be responsible for colistin resistance in KPC-KP, due to the resulting upregulation of the Pmr lipopolysaccharide modification system. In this work we investigated the status of the mgrB gene in a collection of 66 colistin-resistant nonreplicate clinical strains of KPC-KP isolated from different hospitals in Italy and Greece. Overall, 35 strains (53%) exhibited alterations of the mgrB gene, including insertions of different types of mobile elements (IS5-like, IS1F-like, or ISKpn14), nonsilent point mutations, and small intragenic deletions. Four additional strains had a larger deletion of the mgrB locus, while the remaining 27 strains (41%) did not show mgrB alterations. Transcriptional upregulation of the phoQ and pmrK genes (part of the phoPQ and pmrHFIJKLM operon, respectively) was observed in all strains with mgrB alterations. Complementation experiments with a wild-type mgrB gene restored colistin susceptibility and basal expression levels of phoQ and pmrK genes in strains carrying different types of mgrB alterations. The present results suggest that mgrB alteration can be a common mechanism of colistin resistance among KPC-KP in the clinical setting

    Polymyxin resistance caused by mgrB inactivation is not associated with significant biological cost in Klebsiella pneumoniae

    No full text
    The inactivation of the mgrB gene, which encodes a negative-feedback regulator of the PhoPQ signaling system, was recently shown to be a common mutational mechanism responsible for acquired polymyxin resistance among carbapenemase-producing Klebsiella pneumoniae strains from clinical sources. In this work, we show that mgrB mutants can easily be selected in vitro from different K. pneumoniae lineages, and mgrB inactivation is not associated with a significant biological cost

    Synergistic Activity of Colistin in Combination With Resveratrol Against Colistin-Resistant Gram-Negative Pathogens

    Get PDF
    Objectives: In this study, we investigated the antimicrobial activity of resveratrol in combination with colistin, a last-resort agent for the treatment of severe infections caused by multidrug resistant Gram-negative pathogens.Methods: The synergistic activity and the bactericidal activity of colistin in combination with resveratrol was investigated by checkerboard assays and time-kill assays, respectively. A total of 21 strains were investigated, including 16 strains of different species (Klebsiella pneumoniae, n = 6, Escherichia coli, n = 6; Citrobacter braakii, n = 1; Stenotrophomonas malthophilia, n = 1; Enterobacter cloaceae, n = 1; Acinetobacter baumannii, n = 1) with acquired colistin resistance, three colistin-susceptible K. pneumoniae precursors, and two strains of intrinsically colistin-resistant species (Serratia marcescens, n = 1; Proteus mirabilis, n = 1). Mechanisms of acquired colistin resistance included chromosomal mutations (i.e., mgrB, pmrAB) and plasmid genes (mcr-1, mcr-1.2).Results: Resveratrol did not show any significant intrinsic antimicrobial activity. Overall, a relevant synergistic antimicrobial activity of resveratrol in combination with colistin was observed with all tested strains, except for the three colistin-susceptible K. pneumoniae strains, and for two mcr-1-positive E. coli strains. In time-kill assays, performed with 15 selected strains, the combination of colistin 2 mg/L plus resveratrol 128 mg/L was bactericidal with 11 strains, and bacteriostatic for the remaining ones.Conclusions: Resveratrol was found to potentiate colistin activity against a wide panel of colistin-resistant strains, regardless of species and resistance mechanisms, which would deserve further investigation for potential clinical applications
    corecore