144 research outputs found

    Clifford-Finsler Algebroids and Nonholonomic Einstein-Dirac Structures

    Full text link
    We propose a new framework for constructing geometric and physical models on nonholonomic manifolds provided both with Clifford -- Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off-diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange and/or Riemann-Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off-diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions.Comment: The manuscript was substantially modified following recommendations of JMP referee. The former Chapter 2 and Appendix were elliminated. The Introduction and Conclusion sections were modifie

    Topological strings on noncommutative manifolds

    Get PDF
    We identify a deformation of the N=2 supersymmetric sigma model on a Calabi-Yau manifold X which has the same effect on B-branes as a noncommutative deformation of X. We show that for hyperkahler X such deformations allow one to interpolate continuously between the A-model and the B-model. For generic values of the noncommutativity and the B-field, properties of the topologically twisted sigma-models can be described in terms of generalized complex structures introduced by N. Hitchin. For example, we show that the path integral for the deformed sigma-model is localized on generalized holomorphic maps, whereas for the A-model and the B-model it is localized on holomorphic and constant maps, respectively. The geometry of topological D-branes is also best described using generalized complex structures. We also derive a constraint on the Chern character of topological D-branes, which includes A-branes and B-branes as special cases.Comment: 36 pages, AMS latex. v2: a reference to a related work has been added. v3: An error in the discussion of the Fourier-Mukai transform for twisted coherent sheaves has been fixed, resulting in several changes in Section 2. The rest of the paper is unaffected. v4: an incorrect statement concerning Lie algebroid cohomology has been fixe

    Symplectic Origami

    Get PDF
    An origami manifold is a manifold equipped with a closed 2-form which is symplectic except on a hypersurface where it is like the pullback of a symplectic form by a folding map and its kernel fibrates with oriented circle fibers over a compact base. We can move back and forth between origami and symplectic manifolds using cutting (unfolding) and radial blow-up (folding), modulo compatibility conditions. We prove an origami convexity theorem for hamiltonian torus actions, classify toric origami manifolds by polyhedral objects resembling paper origami and discuss examples. We also prove a cobordism result and compute the cohomology of a special class of origami manifolds.Comment: v2; 42 pages, 18 figures; significant revision; to appear in Int. Math. Res. Not.; first published online December 2, 201

    BRST quantization of quasi-symplectic manifolds and beyond

    Full text link
    We consider a class of \textit{factorizable} Poisson brackets which includes almost all reasonable Poisson structures. A particular case of the factorizable brackets are those associated with symplectic Lie algebroids. The BRST theory is applied to describe the geometry underlying these brackets as well as to develop a deformation quantization procedure in this particular case. This can be viewed as an extension of the Fedosov deformation quantization to a wide class of \textit{irregular} Poisson structures. In a more general case, the factorizable Poisson brackets are shown to be closely connected with the notion of nn-algebroid. A simple description is suggested for the geometry underlying the factorizable Poisson brackets basing on construction of an odd Poisson algebra bundle equipped with an abelian connection. It is shown that the zero-curvature condition for this connection generates all the structure relations for the nn-algebroid as well as a generalization of the Yang-Baxter equation for the symplectic structure.Comment: Journal version, references and comments added, style improve

    On the logical operators of quantum codes

    Get PDF
    I show how applying a symplectic Gram-Schmidt orthogonalization to the normalizer of a quantum code gives a different way of determining the code's logical operators. This approach may be more natural in the setting where we produce a quantum code from classical codes because the generator matrices of the classical codes form the normalizer of the resulting quantum code. This technique is particularly useful in determining the logical operators of an entanglement-assisted code produced from two classical binary codes or from one classical quaternary code. Finally, this approach gives additional formulas for computing the amount of entanglement that an entanglement-assisted code requires.Comment: 5 pages, sequel to the findings in arXiv:0804.140

    The Lie-Poisson structure of the reduced n-body problem

    Full text link
    The classical n-body problem in d-dimensional space is invariant under the Galilean symmetry group. We reduce by this symmetry group using the method of polynomial invariants. As a result we obtain a reduced system with a Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The reduction preserves the natural form of the Hamiltonian as a sum of kinetic energy that depends on velocities only and a potential that depends on positions only. Hence we proceed to construct a Poisson integrator for the reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure

    Poisson Geometry in Constrained Systems

    Full text link
    Constrained Hamiltonian systems fall into the realm of presymplectic geometry. We show, however, that also Poisson geometry is of use in this context. For the case that the constraints form a closed algebra, there are two natural Poisson manifolds associated to the system, forming a symplectic dual pair with respect to the original, unconstrained phase space. We provide sufficient conditions so that the reduced phase space of the constrained system may be identified with a symplectic leaf in one of those. In the second class case the original constrained system may be reformulated equivalently as an abelian first class system in an extended phase space by these methods. Inspired by the relation of the Dirac bracket of a general second class constrained system to the original unconstrained phase space, we address the question of whether a regular Poisson manifold permits a leafwise symplectic embedding into a symplectic manifold. Necessary and sufficient for this is the vanishing of the characteristic form-class of the Poisson tensor, a certain element of the third relative cohomology.Comment: 41 pages, more detailed abstract in paper; v2: minor corrections and an additional referenc

    Isotropic A-branes and the stability condition

    Full text link
    The existence of a new kind of branes for the open topological A-model is argued by using the generalized complex geometry of Hitchin and the SYZ picture of mirror symmetry. Mirror symmetry suggests to consider a bi-vector in the normal direction of the brane and a new definition of generalized complex submanifold. Using this definition, it is shown that there exists generalized complex submanifolds which are isotropic in a symplectic manifold. For certain target space manifolds this leads to isotropic A-branes, which should be considered in addition to Lagrangian and coisotropic A-branes. The Fukaya category should be enlarged with such branes, which might have interesting consequences for the homological mirror symmetry of Kontsevich. The stability condition for isotropic A-branes is studied using the worldsheet approach.Comment: 19 page

    Symplectic geometry on moduli spaces of J-holomorphic curves

    Full text link
    Let (M,\omega) be a symplectic manifold, and Sigma a compact Riemann surface. We define a 2-form on the space of immersed symplectic surfaces in M, and show that the form is closed and non-degenerate, up to reparametrizations. Then we give conditions on a compatible almost complex structure J on (M,\omega) that ensure that the restriction of the form to the moduli space of simple immersed J-holomorphic Sigma-curves in a homology class A in H_2(M,\Z) is a symplectic form, and show applications and examples. In particular, we deduce sufficient conditions for the existence of J-holomorphic Sigma-curves in a given homology class for a generic J.Comment: 16 page
    corecore