86 research outputs found

    Water safety in healthcare facilities. The Vieste Charter

    Get PDF
    The Study Group on Hospital Hygiene of the Italian Society of Hygiene, Preventive Medicine and Public Health (GISIO-SItI) and the Local Health Authority of Foggia, Apulia, Italy, after the National Convention "Safe water in healthcare facilities" held in Vieste-Pugnochiuso on 27-28 May 2016, present the "Vieste Charter", drawn up in collaboration with experts from the National Institute of Health and the Ministry of Health. This paper considers the risk factors that may affect the water safety in healthcare facilities and reports the current regulatory frameworks governing the management of installations and the quality of the water. The Authors promote a careful analysis of the risks that characterize the health facilities, for the control of which specific actions are recommended in various areas, including water safety plans; approval of treatments; healthcare facilities responsibility, installation and maintenance of facilities; multidisciplinary approach; education and research; regional and national coordination; communication

    Technology generation to dissemination:lessons learned from the tef improvement project

    Get PDF
    Indigenous crops also known as orphan crops are key contributors to food security, which is becoming increasingly vulnerable with the current trend of population growth and climate change. They have the major advantage that they fit well into the general socio-economic and ecological context of developing world agriculture. However, most indigenous crops did not benefit from the Green Revolution, which dramatically increased the yield of major crops such as wheat and rice. Here, we describe the Tef Improvement Project, which employs both conventional- and molecular-breeding techniques to improve tef\u2014an orphan crop important to the food security in the Horn of Africa, a region of the world with recurring devastating famines. We have established an efficient pipeline to bring improved tef lines from the laboratory to the farmers of Ethiopia. Of critical importance to the long-term success of this project is the cooperation among participants in Ethiopia and Switzerland, including donors, policy makers, research institutions, and farmers. Together, European and African scientists have developed a pipeline using breeding and genomic tools to improve the orphan crop tef and bring new cultivars to the farmers in Ethiopia. We highlight a new variety, Tesfa, developed in this pipeline and possessing a novel and desirable combination of traits. Tesfa\u2019s recent approval for release illustrates the success of the project and marks a milestone as it is the first variety (of many in the pipeline) to be released

    Topological variation in single-gene phylogenetic trees

    Get PDF
    A large-scale phylogenetic study of the human lineage dramatically points up the problems of using single genes to build phylogenetic trees

    Extensive Gains and Losses of Olfactory Receptor Genes in Mammalian Evolution

    Get PDF
    Odor perception in mammals is mediated by a large multigene family of olfactory receptor (OR) genes. The number of OR genes varies extensively among different species of mammals, and most species have a substantial number of pseudogenes. To gain some insight into the evolutionary dynamics of mammalian OR genes, we identified the entire set of OR genes in platypuses, opossums, cows, dogs, rats, and macaques and studied the evolutionary change of the genes together with those of humans and mice. We found that platypuses and primates have <400 functional OR genes while the other species have 800–1,200 functional OR genes. We then estimated the numbers of gains and losses of OR genes for each branch of the phylogenetic tree of mammals. This analysis showed that (i) gene expansion occurred in the placental lineage each time after it diverged from monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order-specific manner, making the gene repertoires highly variable among different orders. It appears that the number of OR genes is determined primarily by the functional requirement for each species, but once the number reaches the required level, it fluctuates by random duplication and deletion of genes. This fluctuation seems to have been aided by the stochastic nature of OR gene expression

    Fast estimation of the difference between two PAM/JTT evolutionary distances in triplets of homologous sequences

    Get PDF
    BACKGROUND: The estimation of the difference between two evolutionary distances within a triplet of homologs is a common operation that is used for example to determine which of two sequences is closer to a third one. The most accurate method is currently maximum likelihood over the entire triplet. However, this approach is relatively time consuming. RESULTS: We show that an alternative estimator, based on pairwise estimates and therefore much faster to compute, has almost the same statistical power as the maximum likelihood estimator. We also provide a numerical approximation for its variance, which could otherwise only be estimated through an expensive re-sampling approach such as bootstrapping. An extensive simulation demonstrates that the approximation delivers precise confidence intervals. To illustrate the possible applications of these results, we show how they improve the detection of asymmetric evolution, and the identification of the closest relative to a given sequence in a group of homologs. CONCLUSION: The results presented in this paper constitute a basis for large-scale protein cross-comparisons of pairwise evolutionary distances

    The 3-Base Periodicity and Codon Usage of Coding Sequences Are Correlated with Gene Expression at the Level of Transcription Elongation

    Get PDF
    Background: Gene transcription is regulated by DNA transcriptional regulatory elements, promoters and enhancers that are located outside the coding regions. Here, we examine the characteristic 3-base periodicity of the coding sequences and analyse its correlation with the genome-wide transcriptional profile of yeast. Principal Findings: The analysis of coding sequences by a new class of indices proposed here identified two different sources of 3-base periodicity: the codon frequency and the codon sequence. In exponentially growing yeast cells, the codon-frequency component of periodicity accounts for 71.9 % of the variability of the cellular mRNA by a strong association with the density of elongating mRNA polymerase II complexes. The mRNA abundance explains most of the correlation between the codon-frequency component of periodicity and protein levels. Furthermore, pyrimidine-ending codons of the four-fold degenerate small amino acids alanine, glycine and valine are associated with genes with double the transcription rate of those associated with purine-ending codons. Conclusions: We demonstrate that the 3-base periodicity of coding sequences is higher than expected by the codon usage frequency (CUF) and that its components, associated with codon bias and amino acid composition, are correlated with gene expression, principally at the level of transcription elongation. This indicates a role of codon sequences in maximising the transcription efficiency in exponentially growing yeast cells. Moreover, the results contrast with the common Darwinia

    Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model

    Get PDF
    We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative (‘non-physical’) approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host

    Synonymous Codon Ordering: A Subtle but Prevalent Strategy of Bacteria to Improve Translational Efficiency

    Get PDF
    Background: In yeast coding sequences, once a particular codon has been used, subsequent occurrence of the same amino acid tends to use codons sharing the same tRNA. Such a phenomenon of co-tRNA codons pairing bias (CTCPB) is also found in some other eukaryotes but it is not known whether it occurs in prokaryotes. Methodology/Principal Findings: In this study, we focused on a total of 773 bacterial genomes to investigate their synonymous codon pairing preferences. After calculating the actual frequencies of synonymous codon pairs and comparing them with their expected values, we detected an obvious pairing bias towards identical codon pairs. This seems consistent with the previously reported CTCPB phenomenon, since identical codons are certainly read by the same tRNA. However, among co-tRNA but non-identical codon pairs, only 22 were often found overrepresented, suggesting that many co-tRNA codons actually do not preferentially pair together in prokaryotes. Therefore, the previously reported co-tRNA codons pairing rule needs to be more rigorously defined. The affinity differences between a tRNA anticodon and its readable codons should be taken into account. Moreover, both within-gene-shuffling tests and phylogenetic analyses support the idea that translational selection played an important role in shaping the observed synonymous codon pairing pattern in prokaryotes. Conclusions: Overall, a high level of synonymous codon pairing bias was detected in 73 % investigated bacterial species

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    Quantification of codon selection for comparative bacterial genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistics measuring codon selection seek to compare genes by their sensitivity to selection for translational efficiency, but existing statistics lack a model for testing the significance of differences between genes. Here, we introduce a new statistic for measuring codon selection, the Adaptive Codon Enrichment (ACE).</p> <p>Results</p> <p>This statistic represents codon usage bias in terms of a probabilistic distribution, quantifying the extent that preferred codons are over-represented in the gene of interest relative to the mean and variance that would result from stochastic sampling of codons. Expected codon frequencies are derived from the observed codon usage frequencies of a broad set of genes, such that they are likely to reflect nonselective, genome wide influences on codon usage (<it>e.g</it>. mutational biases). The relative adaptiveness of synonymous codons is deduced from the frequency of codon usage in a pre-selected set of genes relative to the expected frequency. The ACE can predict both transcript abundance during rapid growth and the rate of synonymous substitutions, with accuracy comparable to or greater than existing metrics. We further examine how the composition of reference gene sets affects the accuracy of the statistic, and suggest methods for selecting appropriate reference sets for any genome, including bacteriophages. Finally, we demonstrate that the ACE may naturally be extended to quantify the genome-wide influence of codon selection in a manner that is sensitive to a large fraction of codons in the genome. This reveals substantial variation among genomes, correlated with the tRNA gene number, even among groups of bacteria where previously proposed whole-genome measures show little variation.</p> <p>Conclusions</p> <p>The statistical framework of the ACE allows rigorous comparison of the level of codon selection acting on genes, both within a genome and between genomes.</p
    corecore