71 research outputs found

    A defined subset of adenylyl cyclases is regulated by bicarbonate ion

    Get PDF
    The molecular basis by which organisms detect and respond to fluctuations in inorganic carbon is not known. The cyaB1 gene of the cyanobacterium Anabaena sp. PCC7120 codes for a multidomain protein with a C-terminal class III adenylyl cyclase catalyst that was specifically stimulated by bicarbonate ion (EC50 9.6 mM). Bicarbonate lowered substrate affinity but increased reaction velocity. A point mutation in the active site (Lys-646) reduced activity by 95% and was refractory to bicarbonate activation. We propose that Lys-646 specifically coordinates bicarbonate in the active site in conjunction with an aspartate to threonine polymorphism (Thr-721) conserved in class III adenylyl cyclases from diverse eukaryotes and prokaryotes. Using recombinant proteins we demonstrated that adenylyl cyclases that contain the active site threonine (cyaB of Stigmatella aurantiaca and Rv1319c of Mycobacterium tuberculosis) are bicarbonate-responsive, whereas adenylyl cyclases with a corresponding aspartate (Rv1264 of Mycobacterium) are bicarbonate-insensitive. Large numbers of class III adenylyl cyclases may therefore be activated by bicarbonate. This represents a novel mechanism by which diverse organisms can detect bicarbonate ion

    CO2 directly modulates connexin 26 by formation of carbamate bridges between subunits

    Get PDF
    Homeostatic regulation of the partial pressure of CO2 (PCO2) is vital for life. Sensing of pH has been proposed as a sufficient proxy for determination of PCO2 and direct CO2-sensing largely discounted. Here we show that connexin 26 (Cx26) hemichannels, causally linked to respiratory chemosensitivity, are directly modulated by CO2. A ‘carbamylation motif’, present in CO2-sensitive connexins (Cx26, Cx30, Cx32) but absent from a CO2-insensitive connexin (Cx31), comprises Lys125 and four further amino acids that orient Lys125 towards Arg104 of the adjacent subunit of the connexin hexamer. Introducing the carbamylation motif into Cx31 created a mutant hemichannel (mCx31) that was opened by increases in PCO2. Mutation of the carbamylation motif in Cx26 and mCx31 destroyed CO2 sensitivity. Course-grained computational modelling of Cx26 demonstrated that the proposed carbamate bridge between Lys125 and Arg104 biases the hemichannel to the open state. Carbamylation of Cx26 introduces a new transduction principle for physiological sensing of CO2

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Bicarbonate stimulated adenylyl cyclases

    No full text
    Bicarbonate ion is fundamental to the biology of all living organisms. HCO(3)(-) is vital to such diverse physiological processes as carbon fixation, cellular homeostasis, sperm maturation, and nucleotide synthesis. A defined subset of adenylyl cyclases identified in eukaryotes and prokaryotes are directly activated by HCO(3)(-). As such, cAMP represents the first identified biological effector for fluctuations in intracellular inorganic carbon levels. The identification of a signal transduction pathway activated by HCO(3)(-) has far reaching implications for understanding how the cell responds to fluctuations in this essential anion

    Sodium regulation of GAF domain function

    No full text
    Cyclic nucleotide PDEs (phosphodiesterases) regulate cellular levels of cAMP and cGMP by controlling the rate of degradation. Several mammalian PDE isoforms possess N-terminal GAF (found in cGMP PDEs, Anabaena adenylate cyclases and Escherichia coli FhlA; where FhlA is formate hydrogen lyase transcriptional activator) domains that bind cyclic nucleotides. Similarly, the CyaB1 and CyaB2 ACs (adenylate cyclases) of the cyanobacterium Anabaena PCC 7120 bind cAMP through one (CyaB1) or two (CyaB2) N-terminal GAF domains and mediate autoregulation of the AC domain. Sodium inhibits the activity of CyaB1, CyaB2 and mammalian PDE2A in vitro through modulation of GAF domain function. Furthermore, genetic ablation of cyaB1 and cyaB2 gives rise to Anabaena strains defective in homoeostasis at limiting sodium. Sodium regulation of GAF domain function has therefore been conserved since the eukaryotic/prokaryotic divergence. The GAF domain is the first identified protein domain to directly sense and signal changes in environmental sodium

    Signalling through cyclic nucleotide monophosphates in cyanobacteria

    No full text

    Signalling through cyclic nucleotide monophosphates in cyanobacteria

    No full text

    Genetic characterization of adenylyl cyclase function

    No full text
    • …
    corecore