12 research outputs found

    Fractal parameters of pore space from CT images of soils under contrasting management practices

    Full text link
    Soil structure plays an important role in flow and transport phenomena, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. Morphological features such as pore-size distribution, pore space volume or pore?solid surface can be altered by different soil management practices. Irregularity of these features and their changes can be described using fractal geometry. In this study, we focus primarily on the characterization of soil pore space as a 3D geometrical shape by fractal analysis and on the ability of fractal dimensions to differentiate between two a priori different soil structures. We analyze X-ray computed tomography (CT) images of soils samples from two nearby areas with contrasting management practices. Within these two different soil systems, samples were collected from three depths. Fractal dimensions of the pore-size distributions were different depending on soil use and averaged values also differed at each depth. Fractal dimensions of the volume and surface of the pore space were lower in the tilled soil than in the natural soil but their standard deviations were higher in the former as compared to the latter. Also, it was observed that soil use was a factor that had a statistically significant effect on fractal parameters. Fractal parameters provide useful complementary information about changes in soil structure due to changes in soil management. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218348X14400118?queryID=%24%7BresultBean.queryID%7D

    Volume, Surface, Connectivity and Size Distribution of Soil Pore Space in CT Images: Comparison of Samples at Different Depths from Nearby Natural and Tillage Areas

    Full text link
    The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume

    Parallel sets and morphological measurements of CT images of soil pore structure in a vineyard

    Full text link
    Important physical and biological processes in soil-plant-microbial systems are dominated by the geometry of soil pore space, and a correct model of this geometry is critical for understanding them. We analyze the geometry of soil pore space with the X-ray computed tomography (CT) of intact soil columns. We present here some preliminary results of our investigation on Minkowski functionals of parallel sets to characterize soil structure. We also show how the evolution of Minkowski morphological measurements of parallel sets may help to characterize the influence of conventional tillage and permanent cover crop of resident vegetation on soil structure in a Spanish Mediterranean vineyard

    Morphological Functions with Parallel Sets for the Pore Space of X-ray CT Images of Soil Columns

    Get PDF
    During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences

    Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures

    Get PDF
    A correct statistical model of soil pore structure can be critical for understanding flow and transport processes in soils, and creating synthetic soil pore spaces for hypothetical and model testing, and evaluating similarity of pore spaces of different soils. Advanced visualization techniques such as X-ray computed tomography (CT) offer new opportunities of exploring heterogeneity of soil properties at horizon or aggregate scales. Simple fractal models such as fractional Brownian motion that have been proposed to capture the complex behavior of soil spatial variation at field scale rarely simulate irregularity patterns displayed by spatial series of soil properties. The objective of this work was to use CT data to test the hypothesis that soil pore structure at the horizon scale may be represented by multifractal models. X-ray CT scans of twelve, water-saturated, 20-cm long soil columns with diameters of 7.5 cm were analyzed. A reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital images with a voxel resolution of 110 microns and a cross-sectional size of 690 Ă— 690 pixels. The images were binarized and the spatial series of the percentage of void space vs. depth was analyzed to evaluate the applicability of the multifractal model. The series of depth-dependent macroporosity values exhibited a well-defined multifractal structure that was revealed by singularity and RĂ©nyi spectra. The long-range dependencies in these series were parameterized by the Hurst exponent. Values of the Hurst exponent close to one were observed indicating the strong persistence in variations of porosity with depth. The multifractal modeling of soil macropore structure can be an efficient method for parameterizing and simulating the vertical spatial heterogeneity of soil pore space

    A protocol for wide range porosity data image aquisition

    Get PDF
    A protocol for obtaining soil digital images with a wide range of pore sizes, intended for fractal studies of the porosity, using a photo- camera and a confocal microscope images is propose

    Macroporosity of 2-D cross sections of soil columns via X-ray CT: multifractal statistics and long range correlations for assessing 3-D soil pore structure

    Full text link
    Soil pore structure controls important physical and biological processes in the soil-plant-microbial systems where microbial population dynamics, nutrient cycling, diffusion, mass flow and nutrient uptake by roots take place across many orders of magnitude in length scale. Over the last decades, fractal geometry has been proposed to deal with soil pore complexity and fractal techniques have been applied. Simple fractal models such as fractional Brownian motions, that have been proposed to capture the complex behavior of soil spatial variation, often cannot simulate the irregularity patterns displayed by spatial records of soil properties. It has been reported that these spatial records exhibit a behavior close to the so-called multifractal structures. Advanced visualization techniques such as X-ray computed tomography (CT) are required to assess and characterize the multifractal behavior of soil pore space. The objective of this work was to develop the multifractal description of soil porosity values (2-D sectional porosities) as a function of depth with data from binarized 2-D images that were obtained from X-ray CT scans of 12 water-saturated 20 cm-long soil columns with diameters of 7.5 cm. A reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital images with a voxel resolution of 110 microns and a cross-sectional size of 690x690 pixels. The series corresponding to the percentage of void space of the sectional binarized images were recorded. These series of depth-dependent macroporosity values exhibited a well defined multifractal structure that was represented by the singularity and the RĂ©nyi spectra. We also parameterized the memory, or long range dependencies, in these series using the Hurst exponent and the multifractal model. The distinct behavior of each porosity series may be associated with pore connectivity and furthermore, correlated with hydraulic soil properties. The obtained multifractal spectra were consistent with multinomial multifractal measures where larger concentrations were less diverse but more common than the smaller ones. Therefore, models to assess pore space connectivity should incorporate a multifractal random structure compatible with this multinomial structure and the long range dependences that displayed these porosity series. Parameterization of the memory in depth dependencies of 2-D porosity series yields a useful representation of complex 3-D macropore geometry and topology

    Multifractal features of 3-D macropore structures of discretized X-ray CT of undisturbed soil columns

    Get PDF
    The objective of this work was to develop the multifractal description of soil porosity values (2-D sectional porosities) as a function of depth with data from binarized 2-D images that were obtained from X-ray CT scans of 12 water-saturated 20 cm-long soil columns with diameters of 7.5 cm. A reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital images with a voxel resolution of 110 microns and a cross-sectional size of 690x690 pixels. The series corresponding to the percentage of void space of the sectional binarized images were recorded. These series of depth-dependent macroporosity values exhibited a well defined multifractal structure that was represented by the singularity and the RĂ©nyi spectra. We also parameterized the memory, or long range dependencies, in these series using the Hurst exponent and the multifractal model

    Entropy based parametrization of soils: Models and Tools

    Full text link
    Particle-size distribution (PSD) is a fundamental soil physical property. The PSD is commonly reported in terms of the mass percentages of sand, silt and clay present

    Ergebnisse des Modellvorhabens 'Suchtprophylaxe im Landkreis Mayen-Koblenz'

    Get PDF
    UuStB Koeln(38)-850106413 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore