15 research outputs found
BioClimate: a Science Gateway for Climate Change and Biodiversity research in the EUBrazilCloudConnect project
[EN] Climate and biodiversity systems are closely linked across a wide range of scales. To better understand the mutual interaction between climate change and biodiversity there is a strong need for multidisciplinary skills, scientific tools, and access to a large variety of heterogeneous, often distributed, data sources. Related to that, the EUBrazilCloudConnect project provides a user-oriented research environment built on top of a federated cloud infrastructure across Europe and Brazil, to serve key needs in different scientific domains, which is validated through a set of use cases. Among them, the most data-centric one is focused on climate change and biodiversity research. As part of this use case, the BioClimate Science Gateway has been implemented to provide end-users transparent
access to (i) a highly integrated user-friendly environment, (ii) a large variety of data sources, and (iii) different analytics & visualization tools to serve a large spectrum of users needs and requirements. This paper presents a complete overview of BioClimate and the related scientific environment, in particular its Science Gateway, delivered to the end-user community at the end of the project.This work was supported by the EU FP7 EUBrazilCloudConnect Project (Grant Agreement 614048), and CNPq/Brazil (Grant Agreement no 490115/2013-6).Fiore, S.; Elia, D.; Blanquer Espert, I.; Brasileiro, FV.; Nuzzo, A.; Nassisi, P.; Rufino, LAA.... (2019). BioClimate: a Science Gateway for Climate Change and Biodiversity research in the EUBrazilCloudConnect project. Future Generation Computer Systems. 94:895-909. https://doi.org/10.1016/j.future.2017.11.034S8959099
Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions
Ecological niche models (ENMs) provide a means of characterizing the spatial distribution of suitable conditions for species, and have recently been applied to the challenge of locating potential distributional areas at the Last Glacial Maximum (LGM) when unfavorable climate conditions led to range contractions and fragmentation. Here, we compare and contrast ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions. We examined 20 North American terrestrial vertebrate species from different regions and with different range sizes for which refugia have been identified based on phylogeographic analyses, using ENM tools to make parallel predictions. We then assessed the correspondence between the two approaches based on spatial overlap and areal extent of the predicted refugia. In 14 of the 20 species, the predictions from ENM and predictions based on phylogeographic studies were significantly spatially correlated, suggesting that the two approaches to development of refugial maps are converging on a similar result. Our results confirm that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution
Big data analytics for climate change and biodiversity in the EUBrazilCC federated cloud infrastructure
The analysis of large volumes of data is key for knowledge discovery in several scientific domains such as climate, astrophysics, life sciences among others. It requires a large set of computational and storage resources, as well as flexible and efficient software solutions able to dynamically exploit the available infrastructure and address issues related to data volume, distribution, velocity and heterogeneity. This paper presents a data-driven and cloud-based use case implemented in the context of the EUBrazilCC project for the analysis of climate change and biodiversity data. The use case architecture and main components, as well as a Platform as a Service (PaaS) framework for big data analytics named PDAS, together with its elastic deployment in the EUBrazilCC federated cloud infrastructure are presented and discussed in detail