69 research outputs found

    Predictions of understory light conditions in northern hardwood forests following parameterization, sensitivity analysis, and tests of the SORTIE light model

    Get PDF
    We parameterized the light model of SORTIE for northern hardwoods in eastern Canada, and performed a sensitivity analysis and validation tests of the model before using it to predict the effect of various types of partial cutting on understorey light conditions. The parameterization was done by characterizing the crown geometry and openness of sugar maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britt.), and beech (Fagus grandifolia Ehrh.). Those results indicated that beech casts a deeper shade than sugar maple and yellow birch. The sensitivity analysis showed that the model predictions were more sensitive to variations in the crown geometry parameters, especially the crown radius parameter, than to variations in crown openness. Validation tests of the model were performed in both mapped and unmapped plots by comparing light predicted by SORTIE to light measured in the field using hemispherical photographs and sensor-based measurements. In mapped stands, the model provided reasonably accurate predictions of the overall variation in understorey light levels between 2 and 30% full sunlight, but the predictions tended to lack spatial precision. In unmapped stands, SORTIE accurately predicted stand-level mean light availability at 5 m aboveground for stands ranging in basal area from 19 to 27 m2/ha. At heights lower than 5 m, SORTIE accurately predicted the light availability in a recent selection cut with a low density of understorey vegetation, but tended to overestimate light availability in stands with relatively dense undergrowth. Finally, a demonstration of the possible usefulness of the SORTIE light model is presented by using the model to compare the proportion of various light microsites created by a variety of selection cutting systems in use in eastern Canada (selection cutting with different harvesting intensities, group selection, and patch selection)

    Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests

    Get PDF
    The discipline of silviculture is evolving rapidly, moving from an agricultural model that emphasized simple stand structures toward a natural disturbance- or ecosystem-based model where stands are managed for multiple species and complex structures. Predicting stand dynamics and future yields in mixed-species complex structured stands cannot be easily accomplished with traditional field experiments. We outline the development and structure of SORTIE/BC, a descendent of the SORTIE model. SORTIE/BC is a light-mediated, spatially explicit, mixed-species forest model that makes population dynamic forecasts for juvenile and adult trees. We use the model to simulate partial cutting prescriptions in temperate deciduous, boreal and temperate coniferous mixed-species forests. The species, amount and spatial pattern of canopy tree removal had a major influence on understory light environments. Low and uniform removal of canopy trees were less successful in favouring the growth and survival of regenerating trees of intermediate to shade intolerant species and the growth of retained canopy trees than patch removal. In the boreal mixedwood, strip-cutting can maintain mixed stands but careful attention must be paid to buffer and strip management to optimize stand growth. We conclude that SORTIE/ BC can be very useful to explore and explain the silvicultural implications of complex silvicultural prescriptions for which there are no existing long-term experiments. © 2003 Elsevier B.V. All rights reserved

    Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec

    Get PDF
    We have characterized overstory light transmission, understory light levels, and plant communities in mixedwood boreal forests of northwestern Quebec with the objective of understanding how overstory light transmission interacts with composition and time since disturbance to influence the diversity and composition of understory vegetation, and, in turn, the further attenuation of light to the forest floor by the understory. Overstory light transmission differed among three forest types (aspen, mixed deciduous-conifer, and old cedar-dominated), with old forests having higher proportions of high light levels than aspen and mixed forests, which were characterized by intermediate light levels. The composition of the understory plant communities in old forests showed the weakest correlation to overstory light transmission, although those forests had the largest range of light transmission. The strongest correlation between characteristics of overstory light transmission and understory communities was found in aspen forests. Species diversity indices were consistently higher in aspen forests but showed weak relationships with overstory light transmission. Light attenuation by the understory vegetation and total height of the understory vegetation were strongly and positively related to overstory light transmission but not forest type. Therefore, light transmission through the overstory influenced the structure and function of understory plants more than their diversity and composition. This is likely due to the strong effect of the upper understory layers, which tend to homogenize light levels at the forest floor regardless of forest type. The understory plant community acts as a filter, thereby reducing light levels at the forest floor to uniformly low levels

    Temporal, spatial, and structural patterns of adult trembling aspen and white spruce mortality in Quebec's boreal forest

    Get PDF
    Temporal, spatial, and structural patterns of adult trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) mortality were studied in intact 150-year-old stands in the southwestern boreal forest of Quebec. For both species, mortality decreases (number of dead trees/total number of trees) with distance from the lake edge until 100-150 m, from which point it slightly increases. Strong peaks in mortality were found for 40- to 60-year-old aspen mainly between 1974 and 1992. Such mortality in relatively young aspen is likely related to competition for light from the dominant canopy trees. Also, the recruitment of this young aspen cohort is presumably the result of a stand breakup that occurred when the initial aspen-dominated stand was between 90 and 110 years old. For spruce, strong peaks in mortality were found in 110- to 150-year-old trees and they occurred mainly after 1980. No clear explanation could be found for these peaks, but we suggest that they may be related to senescence or weakening of the trees following the last spruce budworm outbreak. Suppressed and codominant aspen had a much higher mortality ratio than spruce in the same height class, while more surprisingly, no difference in mortality rate was found between dominant trees of the two species. Most spruce trees were found as standing dead, which leads us to reject the hypothesis that windthrow is an important cause of mortality for spruce in our forests

    Effects of suppression and release on sapling growth for 11 tree species of northern, interior British Columbia

    No full text
    Abstract: Saplings of canopy tree species frequently undergo alternating periods of suppression and release before reaching canopy size. In this study, we document the effects of periods of suppression and release on current responses to variation in light by saplings of the 11 major tree species of northwestern, interior British Columbia. We were spe-cifically interested in the degree to which increasing length of suppression had long-term effects on subsequent re-sponse to release in gaps or following partial cutting, and the degree to which the effects of suppression were ameliorated with time following release. At least some saplings of all 11 species had undergone alternating periods of suppression and release. The most shade-tolerant species generally did not show either a decline in growth over time during suppression or a gradual increase in growth at a given light level over time during release. The least shade-tolerant species exhibited significant declines in growth rate during suppression; however, in all of the species except trembling aspen (Populus tremuloides Michx.), the effects of suppression disappeared over time during release. Failure to account for the effects of past suppression and release leads to significant overestimates of the initial responses of shade-intolerant species to release. Our results suggest that competitive balances between species shift substantially over time as a result of growth history and that these shifts have significant effects on successional patterns. Résumé: Les gaules des essences qui forment le couvert subissent fréquemment une alternance de périodes de sup-pression et de dégagement avant d’atteindre leur dimension finale. Dans cette étude, nous avons observé les effets de périodes de suppression et de dégagement sur la réaction courante à une variation de la lumière chez les gaules des 11 principales espèces d’arbres du nord-ouest de la zone intérieure de la Colombie-Britannique. Nous étions plus particulièrement intéressés à déterminer dans quelle mesure l’augmentation de la durée de la période de suppression
    • …
    corecore