1,596 research outputs found

    Differential thermal analysis and solution growth of intermetallic compounds

    Get PDF
    To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr7_7Ni2_2Si5_5, and YMn4_4Al8_8.Comment: 17 pages, 8 figure

    Character of the structural and magnetic phase transitions in the parent and electron doped BaFe2As2 compounds

    Get PDF
    We present a combined high-resolution x-ray diffraction and x-ray resonant magnetic scattering (XRMS) study of as-grown BaFe2As2. The structural/magnetic transitions must be described as a two-step process. At T_S = 134.5 K we observe the onset of a second-order structural transition from the high-temperature paramagnetic tetragonal structure to a paramagnetic orthorhombic phase, followed by a discontinuous step in the structural order parameter that is coincident with a first-order antiferromagnetic (AFM) transition at T_N = 133.75 K. These data, together with detailed high-resolution x-ray studies of the structural transition in lightly doped Ba(Fe{1-x}Co{x})2As2 and Ba(Fe{1-x}Rh{x})2As2 compounds, show that the structural and AFM transitions do, in fact, occur at slightly different temperatures in the parent BaFe2As2 compound, and evolve towards split secondorder transitions as the doping concentration is increased. We estimate the composition for the tricritical point for Co-doping and employ a mean-field approach to show that our measurements can be explained by the inclusion of an anharmonic term in the elastic free energy and magneto-elastic coupling in the form of an emergent Ising-nematic degree of freedom.Comment: 10 pages, 11 figures; accepted for publication in Phys. Rev.

    Unpaired Electrons in the Heavy-Fermion Superconductor CeCoIn_{5}

    Full text link
    Thermal conductivity and specific heat were measured in the superconducting state of the heavy fermion material Ce_{1-x}La_{x}CoIn_{5}. With increasing impurity concentration x, the suppression of T_{c} is accompanied by the increase in the residual electronic specific heat expected of a d-wave superconductor, but it occurs in parallel with a decrease in residual electronic thermal conductivity. This contrasting behavior reveals the presence of uncondensed electrons coexisting with nodal quasiparticles. An extreme multiband scenario is proposed, with a d-wave superconducting gap on the heavy-electron sheets of the Fermi surface and a negligible gap on the light, three-dimensional pockets.Comment: 4 pages, 3 figure

    Heat Capacity Measurements in Pulsed Magnetic Fields

    Full text link
    The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 sec at 35 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60 T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool.Comment: 6 pages, 3 figures, World Scientific Pub. Co., to be publishe

    Commensurate antiferromagnetic ordering in Ba(Fe{1-x}Co{x})2As2 determined by x-ray resonant magnetic scattering at the Fe K-edge

    Get PDF
    We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.Comment: 5 pages, 3 figures; accepted for publication in Phys. Rev. B Rapid Com

    A small sealed Ta crucible for thermal analysis of volatile metallic samples

    Get PDF
    Differential thermal analysis on metallic alloys containing volatile elements can be highly problematic. Here we show how measurements can be performed in commercial, small-sample, equipment without modification. This is achieved by using a sealed Ta crucible, easily fabricated from Ta tubing and sealed in a standard arc furnace. The crucible performance is demonstrated by measurements on a mixture of Mg and MgB2_2, after heating up to 1470C^{\circ}{\rm C}. We also show data, measured on an alloy with composition Gd40_{40}Mg60_{60}, that clearly shows both the liquidus and a peritectic, and is consistent with published phase diagram data

    Epilogue: Superconducting Materials Past, Present and Future

    Get PDF
    Experimental contributors to the field of Superconducting Materials share their informal views on the subject.Comment: Epilogue to Physica C Special Issue on Superconducting Materials, Volume 514 (2015

    57-Fe Mossbauer study of magnetic ordering in superconducting K_0.85Fe_1.83Se_2.09 single crystals

    Full text link
    The magnetic ordering of superconducting single crystals of K_0.85Fe_1.83Se_2.09 has been studied between 10K and 550K using 57-Fe Mossbauer spectroscopy. Despite being superconducting below T_sc ~30K, the iron sublattice in K_0.85Fe_1.83Se_2.09 clearly exhibits magnetic order from well below T_sc to its N\'eel temperature of T_N = 532 +/- 2K. The iron moments are ordered perpendicular to the single crystal plates, i.e. parallel to the crystal c-axis. The order collapses rapidly above 500K and the accompanying growth of a paramagnetic component suggests that the magnetic transition may be first order, which may explain the unusual temperature dependence reported in recent neutron diffraction studies.Comment: 6 pages, 4 figures Submitted to Phys.Rev.

    Heat Transport as a Probe of Electron Scattering by Spin Fluctuations: the Case of Antiferromagnetic CeRhIn5

    Full text link
    Heat and charge conduction were measured in the heavy-fermion metal CeRhIn5, an antiferromagnet with T_N=3.8 K. The thermal resistivity is found to be proportional to the magnetic entropy, revealing that spin fluctuations are as effective in scattering electrons as they are in disordering local moments. The electrical resistivity, governed by a q^2 weighting of fluctuations, increases monotonically with temperature. In contrast, the difference between thermal and electrical resistivities, characterized by an omega^2 weighting, peaks sharply at T_N and eventually goes to zero at a temperature T^* ~ 8 K. T^* thus emerges as a measure of the characteristic energy of magnetic fluctuations.Comment: 4 pages, 4 figure

    Field-Induced Quantum Critical Point in CeCoIn5

    Get PDF
    The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a function of temperature, down to 25 mK and in magnetic fields of up to 16 T applied perpendicular to the basal plane. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho ~ T, and the development of a Fermi liquid state, with its characteristic rho = rho_0 + AT^2 dependence. The field dependence of the T^2 coefficient shows critical behavior with an exponent of 1.37. This is evidence for a field-induced quantum critical point (QCP), occuring at a critical field which coincides, within experimental accuracy, with the superconducting critical field H_c2. We discuss the relation of this field-tuned QCP to a change in the magnetic state, seen as a change in magnetoresistance from positive to negative, at a crossover line that has a common border with the superconducting region below ~ 1 K.Comment: 4 pages, 3 figures (published version
    corecore