2,666 research outputs found

    Local superconducting density of states of ErNi2B2C

    Full text link
    We present local tunnelling microscopy and spectroscopy measurements at low temperatures in single crystalline samples of the magnetic superconductor ErNi2B2C. The electronic local density of states shows a striking departure from s-wave BCS theory with a finite value at the Fermi level, which amounts to half of the normal phase density of states.Comment: 9 pages, 3 figure

    Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering: evidence for the double-q model

    Get PDF
    Recent theoretical efforts aimed at understanding the nature of antiferromagnetic ordering in GdNi2B2C predicted double-q ordering. Here we employ resonant elastic x-ray scattering to test this theory against the formerly proposed, single-q ordering scenario. Our study reveals a satellite reflection associated with a mixed-order component propagation wave vector, viz., (q_a,2q_b,0) with q_b = q_a approx= 0.55 reciprocal lattice units, the presence of which is incompatible with single-q ordering but is expected from the double-q model. A (3q_a,0,0) wave vector (i.e., third-order) satellite is also observed, again in line with the double-q model. The temperature dependencies of these along with that of a first-order satellite are compared with calculations based on the double-q model and reasonable qualitative agreement is found. By examining the azimuthal dependence of first-order satellite scattering, we show the magnetic order to be, as predicted, elliptically polarized at base temperature and find the temperature dependence of the "out of a-b plane" moment component to be in fairly good agreement with calculation. Our results provide qualitative support for the double-q model and thus in turn corroborate the explanation for the "magnetoelastic paradox" offered by this model.Comment: 8 pages, 5 figures. Submitted to Phys. Rev.

    Drastic annealing effects in transport properties of single crystals of the YbNi2B2C heavy fermion system

    Full text link
    We report temperature dependent resistivity, specific heat, magnetic susceptibility and thermoelectric power measurements made on the heavy fermion system YbNi2B2C, for both as grown and annealed single crystals. Our results demonstrate a significant variation in the temperature dependent electrical resistivity and thermoelectric power between as grown crystals and crystals that have undergone optimal (150 hour, 950 C) annealing, whereas the thermodynamic properties: (c_p(T) and chi(T)) remain almost unchanged. We interpret these results in terms of redistributions of local Kondo temperatures associated with ligandal disorder for a small (~ 1%) fraction of the Yb sites.Comment: 5 pages, 4 figures, submitted to PR

    Anisotropic Hc2 of K0.8Fe1.76Se2 determined up to 60 T

    Get PDF
    The anisotropic upper critical field, Hc2(T), curves for K0.8Fe1.76Se2 are determined over a wide range of temperatures down to 1.5 K and magnetic fields up to 60 T. Anisotropic initial slopes of Hc2 ~ -1.4 T/K and -4.6 T/K for magnetic field applied along c-axis and ab-plane, respectively, were observed. Whereas the c-axis Hc2|c(T) increases quasi-linearly with decreasing temperature, the ab-plane Hc2|ab(T) shows a flattening, starting near 25 K above 30 T. This leads to a non-monotonic temperature dependence of the anisotropy parameter \gamma= Hc2|ab/Hc2|c. The anisotropy parameter is ~ 2 near Tc ~ 32 K and rises to a maximum \gamma ~ 3.6 around 27 K. For lower temperatures, \gamma decreases with T in a linear fashion, dropping to \gamma ~ 2.5 by T ~ 18 K. Despite the apparent differences between the K0.8Fe1.76Se2 and (Ba0.55K0.45)Fe2As2 or Ba(Fe0.926Co0.074)2As2, in terms of the magnetic state and proximity to an insulating state, the Hc2(T) curves are remarkably similar.Comment: slightly modified version, accepted to PRB, Rapid Communication

    Magnetic and superconducting phase diagrams in ErNi2B2C

    Get PDF
    We present measurements of the superconducting upper critical field Hc2(T) and the magnetic phase diagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconducting phase diagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.Comment: 5 pages, 4 figure

    Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6

    Full text link
    We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions' magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte

    Ferromagnetism or slow paramagnetic relaxation in Fe-doped Li3_3N?

    Get PDF
    We report on isothermal magnetization, M\"ossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li2_2(Li1x_{1-x}Fex_x)N with x=0x = 0 and x0.30x \approx 0.30. Magnetic hysteresis emerges at temperatures below T50T \approx 50\,K with coercivity fields of up to μ0H=11.6\mu_0H = 11.6\,T at T=2T = 2\,K and magnetic anisotropy energies of 310310\,K (2727\,meV). The ac susceptibility is strongly frequency dependent (f=10f\,=\,10--10,00010,000\,Hz) and reveals an effective energy barrier for spin reversal of ΔE1100\Delta E \approx 1100\,K. The relaxation times follow Arrhenius behavior for T>25T > 25\,K. For T<10T < 10\,K, however, the relaxation times of τ1010\tau \approx 10^{10}\,s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 2525\,J molFe1^{-1}_{\rm Fe}\,K1^{-1} which significantly exceeds RRln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2_2(Li1x_{1-x}Fex_x)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure

    Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe1x_{1-x}Cox_x)2_2As2_2

    Full text link
    Critical current density was studied in single crystals of Ba(Fe1x_{1-x}Cox_x)2_2As2_2 for the values of xx spanning the entire doping phase diagram. A noticeable enhancement was found for slightly underdoped crystals with the peak at x=0.058x = 0.058. Using a combination of polarized-light imaging, x-ray diffraction and magnetic measurements we associate this behavior with the intrinsic pinning on structural domains in the orthorhombic phase. Domain walls extend throughout the sample thickness in the direction of vortices and act as extended pinning centers. With the increasing xx domain structure becomes more intertwined and fine due to a decrease of the orthorhombic distortion. This results in the energy landscape with maze-like spatial modulations favorable for pinning. This finding shows that iron-based pnictide superconductors, characterized by high values of the transition temperature, high upper critical fields, and low anisotropy may intrinsically have relatively high critical current densities.Comment: estimation of Jc correcte
    corecore