4 research outputs found

    X-Ray and EPR study on copper (II) complexes with an enamine ligand

    Get PDF
    AbstractThe enamine (HEAID) obtained from aniline and 2-acetyl-1,3-indandione (2AID) behaves as a bidentate ligand in coordination with copper (II) ion. Two types of crystals, apparently different in shape, were isolated and studied by single-crystal X-ray diffraction. The X-ray data for the brown rhombic crystals of compound 1 shows a mononuclear complex of Cu(II) coordinated with two EAID-anions, Cu(EAID)2. The X-ray data for the green crystals of compound 2 shows a dinuclear Cu(II) complex with two OH− groups acting as bridging ligands, [Cu2(μ-OH)2(EAID)2]. In both cases the ligand coordinates after deprotonation of the amine group

    Normative volumes and relaxation times at 3T during brain development.

    Get PDF
    While research has unveiled and quantified brain markers of abnormal neurodevelopment, clinicians still work with qualitative metrics for MRI brain investigation. The purpose of the current article is to bridge the knowledge gap between case-control cohort studies and individual patient care. Here, we provide a unique dataset of seventy-three 3-to-17 years-old healthy subjects acquired with a 6-minute MRI protocol encompassing T1 and T2 relaxation quantitative sequence that can be readily implemented in the clinical setting; MP2RAGE for T1 mapping and the prototype sequence GRAPPATINI for T2 mapping. White matter and grey matter volumes were automatically quantified. We further provide normative developmental curves based on these two imaging sequences; T1, T2 and volume normative ranges with respect to age were computed, for each ROI of a pediatric brain atlas. This open-source dataset provides normative values allowing to position individual patients acquired with the same protocol on the brain maturation curve and as such provides potentially useful quantitative biomarkers facilitating precise and personalized care

    Submillimeter T 1 atlas for subject‐specific abnormality detection at 7T

    No full text
    Purpose: Studies at 3T have shown that T1relaxometry enables characterization of brain tissues at the single-subject level by comparing individual physical properties to a normative atlas. In this work, an atlas of normative T1values at 7T is introduced with 0.6 mm isotropic resolution and its clinical potential is explored in comparison to 3T. Methods: T1maps were acquired in two separate healthy cohorts scanned at 3T and 7T. Using transfer learning, a template-based brain segmentation algorithm was adapted to ultra-high field imaging data. After segmenting brain tissues, volumes were normalized into a common space, and an atlas of normative T1values was established by modeling the T1inter-subject variability. A method for single-subject comparisons restricted to white matter and subcortical structures was developed by computing Z-scores. The comparison was applied to eight patients scanned at both field strengths for proof of concept. Results: The proposed method for morphometry delivered segmentation masks without statistically significant differences from those derived with the original pipeline at 3T and achieved accurate segmentation at 7T. The established normative atlas allowed characterizing tissue alterations in single-subject comparisons at 7T, and showed greater anatomical details compared with 3T results. Conclusion: A high-resolution quantitative atlas with an adapted pipeline was introduced and validated. Several case studies on different clinical conditions showed the feasibility, potential and limitations of high-resolution single-subject comparisons based on quantitative MRI atlases. This method in conjunction with 7T higher resolution broadens the range of potential applications of quantitative MRI in clinical practice.</p
    corecore