6,894 research outputs found
A Two-Step Approach to Tune the Micro and Nanoscale Morphology of Porous Niobium Oxide to Promote Osteointegration
We present a two-step surface modification process to tailor the micro and nano morphology of niobium oxide layers. Niobium was firstly anodized in spark regime in a Ca-and P-containing solution and subsequently treated by acid etching. The effects of anodizing time and applied potential on the surface morphology is investigated with SEM and AFM, complemented by XPS compositional analysis. Anodizing with a limiting potential of 250 V results in the fast growth of oxide layers with a homogeneous distribution of micro-sized pores. Cracks are, however, observed on 250 V grown layers. Limiting the anodizing potential to 200 V slows down the oxide growth, increasing the anodizing time needed to achieve a uniform pore coverage but produces fracture-free oxide layers. The surface nano morphology is further tuned by a subsequent acid etching process that leads to the formation of nano-sized pits on the anodically grown oxide surface. In vitro tests show that the etching-induced nanostructure effectively promotes cell adhesion and spreading onto the niobium oxide surface
Dynamic Compaction Test on an Hydraulic Silty Sand Fill
Dynamic compaction resulted to be the most effective method to compact a very loose hydraulic silty sand fill, with a fine content from 25 to 90 per cent. Two levels of compaction energy were tested. The soil settlements enforced by these energies were verified with reference to the concept of saturation energy and by means of a simplified analysis of the physical model
Trends of influenza B during the 2010–2016 seasons in 2 regions of north and south Italy: The impact of the vaccine mismatch on influenza immunisation strategy
Influenza A and B viruses are responsible for respiratory infections, representing globally seasonal threats to human health. The 2 viral types often co-circulate and influenza B plays an important role in the spread of infection. A 6-year retrospective surveillance study was conducted between 2010 and 2016 in 2 large administrative regions of Italy, located in the north (Liguria) and in the south (Sicily) of the country, to describe the burden and epidemiology of both B/Victoria and B/Yamagata lineages in different healthcare settings. Influenza B viruses were detected in 5 of 6 seasonal outbreaks, exceeding influenza A during the season 2012–2013. Most of influenza B infections were found in children aged ≤ 14 y and significant differences were observed in the age-groups infected by the different lineages. B/Victoria strains prevailed in younger population than B/Yamagata, but also were more frequently found in the community setting. Conversely, B/Yamagata viruses were prevalent among hospitalized cases suggesting their potential role in the development of more severe disease. The relative proportions of viral lineages varied from year to year, resulting in different lineage-level mismatch for the B component of trivalent influenza vaccine. Our findings confirmed the need for continuous virological surveillance of seasonal epidemics and bring attention to the adoption of universal influenza immunization program in the childhood. The use of tetravalent vaccine formulations may be useful to improve the prevention and control of the influenza burden in general population
HPV related diseases in males: a heavy vaccine-preventable burden
Human Papillomavirus (HPV) has a significant impact in male?s health, as cause of clinical manifestations ranging from genital warts to several cancers of the anogenital and aero-digestive tract. HPV types which most frequently affect men are 6,11,16 and 18, included in the HPV quadrivalent vaccine, recently approved for use in males by Food and Drug Administration (FDA) and European Medicines Agency (EMA). Although several data about the safety and efficacy of quadrivalent vaccine are available, the implementation of proper immunization plans dedicate to male?s population can- not ignore the knowledge of the characteristics of the disease in men, which in some aspects should be clarify, in particular clearance of type-specific HPV infections and transmission dynamics. Purpose of this review is to summarise the main information about the burden and the natural history of the HPV related disease in males
Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)
The phase immiscibility and the excellent matching between Ag(001) and
Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field
of low dimensionality magnetic systems. Intermixing could be drastically
limited at deposition temperatures as low as 140-150 K. The film structural
evolution induced by post-growth annealing presents many interesting aspects
involving activated atomic exchange processes and affecting magnetic
properties. Previous experiments, of He and low energy ion scattering on films
deposited at 150 K, indicated the formation of a segregated Ag layer upon
annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag
matrix. In those experiments, information on sub-surface layers was attained by
techniques mainly sensitive to the topmost layer. Here, systematic PED
measurements, providing chemical selectivity and structural information for a
depth of several layers, have been accompanied with a few XRD rod scans,
yielding a better sensitivity to the buried interface and to the film long
range order. The results of this paper allow a comparison with recent models
enlightening the dissolution paths of an ultra thin metal film into a different
metal, when both subsurface migration of the deposit and phase separation
between substrate and deposit are favoured. The occurrence of a surfactant-like
stage, in which a single layer of Ag covers the Fe film is demonstrated for
films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the
formation of two Ag capping layers is also reported. As the annealing
temperature was increased beyond 700 K, the surface layers closely resembled
the structure of bare Ag(001) with the residual presence of subsurface Fe
aggregates.Comment: 4 pages, 3 figure
Effects of Grain Boundaries and Surfaces on Electronic and Mechanical Properties of Solid Electrolytes
Extended defects, including exposed surfaces and grain boundaries (GBs), are critical to the properties of polycrystalline solid electrolytes in all-solid-state batteries (ASSBs). These defects can alter the mechanical and electronic properties of solid electrolytes, with direct manifestations in the performance of ASSBs. Here, by building a library of 590 surfaces and grain boundaries of 11 relevant solid electrolytes—including halides, oxides, and sulfides— their electronic, mechanical, and thermodynamic characteristics are linked to the functional properties of polycrystalline solid electrolytes. It is found that the energy required to mechanically “separate” grain boundaries can be significantly lower than in the bulk region of materials, which can trigger preferential cracking of solid electrolyte particles in the grain boundary regions. The brittleness of ceramic solid electrolytes, inferred from the predicted low fracture toughness at the grain boundaries, contributes to their cracking under local pressure imparted by lithium (sodium) penetration in the grain boundaries. Extended defects of solid electrolytes introduce new electronic interfacial states within bandgaps of solid electrolytes. These states alter and possibly increase locally the availability of free electrons and holes in solid electrolytes. Factoring effects arising from extended defects appear crucial to explain electrochemical and mechanical observations in ASSBs
Level-3 Calorimetric Resolution available for the Level-1 and Level-2 CDF Triggers
As the Tevatron luminosity increases sophisticated selections are required to
be efficient in selecting rare events among a very huge background. To cope
with this problem, CDF has pushed the offline calorimeter algorithm
reconstruction resolution up to Level 2 and, when possible, even up to Level 1,
increasing efficiency and, at the same time, keeping under control the rates.
The CDF Run II Level 2 calorimeter trigger is implemented in hardware and is
based on a simple algorithm that was used in Run I. This system has worked well
for Run II at low luminosity. As the Tevatron instantaneous luminosity
increases, the limitation due to this simple algorithm starts to become clear:
some of the most important jet and MET (Missing ET) related triggers have large
growth terms in cross section at higher luminosity. In this paper, we present
an upgrade of the Level 2 Calorimeter system which makes the calorimeter
trigger tower information available directly to a CPU allowing more
sophisticated algorithms to be implemented in software. Both Level 2 jets and
MET can be made nearly equivalent to offline quality, thus significantly
improving the performance and flexibility of the jet and MET related triggers.
However in order to fully take advantage of the new L2 triggering capabilities
having at Level 1 the same L2 MET resolution is necessary. The new Level-1 MET
resolution is calculated by dedicated hardware. This paper describes the
design, the hardware and software implementation and the performance of the
upgraded calorimeter trigger system both at Level 2 and Level 1.Comment: 5 pages, 5 figures,34th International Conference on High Energy
Physics, Philadelphia, 200
A mixed integer linear programming model for optimal sovereign debt issuance
Copyright @ 2011, Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in the European Journal of Operational Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at the link below.Governments borrow funds to finance the excess of cash payments or interest payments over receipts, usually by issuing fixed income debt and index-linked debt. The goal of this work is to propose a stochastic optimization-based approach to determine the composition of the portfolio issued over a series of government auctions for the fixed income debt, to minimize the cost of servicing debt while controlling risk and maintaining market liquidity. We show that this debt issuance problem can be modeled as a mixed integer linear programming problem with a receding horizon. The stochastic model for the interest rates is calibrated using a Kalman filter and the future interest rates are represented using a recombining trinomial lattice for the purpose of scenario-based optimization. The use of a latent factor interest rate model and a recombining lattice provides us with a realistic, yet very tractable scenario generator and allows us to do a multi-stage stochastic optimization involving integer variables on an ordinary desktop in a matter of seconds. This, in turn, facilitates frequent re-calibration of the interest rate model and re-optimization of the issuance throughout the budgetary year allows us to respond to the changes in the interest rate environment. We successfully demonstrate the utility of our approach by out-of-sample back-testing on the UK debt issuance data
Elastic and vibrational properties of alpha and beta-PbO
The structure, electronic and dynamic properties of the two layered alpha
(litharge) and beta (massicot) phases of PbO have been studied by density
functional methods. The role of London dispersion interactions as leading
component of the total interaction energy between layers has been addressed by
using the Grimme's approach, in which new parameters for Pb and O atoms have
been developed. Both gradient corrected and hybrid functionals have been
adopted using Gaussian-type basis sets of polarized triple zeta quality for O
atoms and small core pseudo-potential for the Pb atoms. Basis set superposition
error (BSSE) has been accounted for by the Boys-Bernardi correction to compute
the interlayer separation. Cross check with calculations adopting plane waves
that are BSSE free have also been performed for both structures and vibrational
frequencies. With the new set of proposed Grimme's type parameters structures
and dynamical parameters for both PbO phases are in good agreement with
experimental data.Comment: 8 pages, 5 figure
- …