26 research outputs found

    Enzymatic hydrolysis drastically reduces fibre content of palm-kernel expeller, but without enhancing performance in broiler chickens

    Get PDF
    The effectiveness of enzymatic hydrolysis of palm-kernel expeller (PKE) is dependent on various factors that influence the stability and functionality of the enzymes. In the present study, parameters influencing the enzymatic treatment of PKE were optimised employing response surface methodology. In addition, the effectiveness of enzymatic hydrolysed PKE in increasing inclusion rates in broiler diets was evaluated. Results showed that temperature, enzyme concentration and duration of hydrolysis had significant (P < 0.01) effects on the enzymatic hydrolysis of PKE. Using the crude enzyme produced by Aspergillus terreus K1 isolated in our laboratory, maximum reduction of crude fibre (40%) was achieved by fermenting the PKE at 60% initial moisture with 9.0 U/g PKE mannanase at 51°C for 18 h, with the production of 9.9% (w/w) of monosaccharides and oligosaccharides. Results of the growth-performance study indicated that inclusion rate of PKE with or without enzyme treatment in broiler diet is 5% for starter period and 20% for the finisher diet, without any detrimental effect on animal performance. Although the inclusion rate of enzyme-treated PKE can be increased to 30% without affecting average daily gain, feed conversion ratio of the birds will be compromised

    Metagenomics analysis reveals significant modulation of cecal microbiota of broilers fed palm kernel expeller diets

    Get PDF
    The potential use of palm kernel expeller (PKE) as an alternative energy source in broiler diets is limited by the high fiber content. Although enzymatic treatment could alleviate the fiber component and increase the nutritive value of PKE, this apparent improvement is not reflected in the growth response of birds fed with the treated-PKE. As chicken's ceca are the most heavily populated with microflora within their gastrointestinal tract, it was hypothesized that any modulation of the intestinal environment by dietary treatments should be reflected by the composition and activities of the cecal microflora. There is a correlation between cecal microbiota composition and the efficiency of the host to extract energy from the diet and to deposit that energy into improved feed conversion ratio. At present, little is known about the changes on cecal microflora of broilers fed with PKE diets. Hence, this study was designed to assess the effects of feeding different forms of PKE; namely untreated PKE (UPKE), enzyme-treated PKE (EPKE), and oligosaccharides extracted from PKE (OligoPKE), on the cecal microbiota of broiler chickens at 14 d old (day 14) and 28 d old (day 28) using 16S rRNA gene high-throughput next-generation sequencing method. The results showed that temporal changes in cecal microbiota of broiler chickens were evident on day 14 and day 28. The relative abundance of phylum Firmicutes, known to be involved in nutrient uptake and absorption in both age groups was higher in the UPKE as compared to EPKE group. In addition, supplementation of OligoPKE increased (P < 0.05) the relative abundance of Lactobacillus on both D14 and D28, signifying its effect as prebiotics in enhancing growth of indigenous Lactobacillus. Our results showed that cecal microbiota was significantly modulated by dietary treatments and that the lower relative abundance of phylum Firmicutes in chickens fed with EPKE could be a reason why broiler chickens fed with EPKE of higher metabolizable energy (ME) content did not show improvement in their growth performance

    Forage diversification of parent Bali cattle in Simantri Group 733 Manah Cika Guna Bhakti, Baru Village Tabanan Bali Indonesia

    Get PDF
    Forage diversification of parent Bali cattle in SimantrSimantri is agricultural integration activity in Bali, Indonesia covering food crops, horticulture businesses, animal husbandry, fisheries, plantations, and forestry crops in one area/activity location. The Simantri Group 733 Manah Cika Guna Bhakti Desa Baru has been formed since 2009, with available feed sources in the form of grasses that grow naturally (nature grass) and some forage plants such as gamal (Gliricidia sepium) and agricultural crop waste. Forage is the main feed for ruminants, which can be in the form of grasses or fodder plants such as legumes. Partners lack knowledge in the field of feed, especially learning about types of forage that are superior in quantity and quality, and are willing to increase the variety of quality forage sources available throughout the season. Partners also want to get special forage seeds and how to cultivate them. It is necessary to conduct action research for Simantri 733 Manah Cika Guna Bhakti Livestock Farmer Group in Banjar Dinas Baru, Baru Village, Marga District, Tabanan Regency, Bali, to help solve problems faced by partners by providing knowledge about superior types of forage, the introduction of technology and skills in cultivation such as land preparation, seed selection, planting, and care. This international collaboration activity was carried out well and smoothly on October 30, 2021, attended by 20 members of the Simantri group. The method used is the method of extension, active participation of farmers, and exploratory. Based on the evaluation results, the Simantri group has recognized several superior forages and has mastered the technology for the cultivation of superior types of forage. Mastery of technology reaches 80%, so it is necessary to provide further assistance to the group during the first and second cutting and preservation techniques so that the rainforest remains of good qualityi Group 733 Manah Cika Guna Bhakti, Baru Village Tabanan Bali Indonesi

    Metagenomics analysis reveals significant modulation of cecal microbiota of broilers fed palm kernel expeller diets

    Get PDF
    The potential use of palm kernel expeller (PKE) as an alternative energy source in broiler diets is limited by the high fiber content. Although enzymatic treatment could alleviate the fiber component and increase the nutritive value of PKE, this apparent improvement is not reflected in the growth response of birds fed with the treated-PKE. As chicken's ceca are the most heavily populated with microflora within their gastrointestinal tract, it was hypothesized that any modulation of the intestinal environment by dietary treatments should be reflected by the composition and activities of the cecal microflora. There is a correlation between cecal microbiota composition and the efficiency of the host to extract energy from the diet and to deposit that energy into improved feed conversion ratio. At present, little is known about the changes on cecal microflora of broilers fed with PKE diets. Hence, this study was designed to assess the effects of feeding different forms of PKE; namely untreated PKE (UPKE), enzyme-treated PKE (EPKE), and oligosaccharides extracted from PKE (OligoPKE), on the cecal microbiota of broiler chickens at 14 d old (day 14) and 28 d old (day 28) using 16S rRNA gene high-throughput next-generation sequencing method. The results showed that temporal changes in cecal microbiota of broiler chickens were evident on day 14 and day 28. The relative abundance of phylum Firmicutes, known to be involved in nutrient uptake and absorption in both age groups was higher in the UPKE as compared to EPKE group. In addition, supplementation of OligoPKE increased (P < 0.05) the relative abundance of Lactobacillus on both D14 and D28, signifying its effect as prebiotics in enhancing growth of indigenous Lactobacillus. Our results showed that cecal microbiota was significantly modulated by dietary treatments and that the lower relative abundance of phylum Firmicutes in chickens fed with EPKE could be a reason why broiler chickens fed with EPKE of higher metabolizable energy (ME) content did not show improvement in their growth performance

    Naturally produced lovastatin modifies the histology and proteome profile of goat skeletal muscle

    Get PDF
    Enteric methane formation in ruminants is one of the major contributors to climate change. We have reported that supplementation of naturally produced lovastatin reduced methane emissions in goats without adversely affecting rumen fermentation and animal performance, except that at higher level, lovastatin can have a negative effect on the palatability of the formulated diet. As statins are associated with the development of muscle-related adverse effects at higher than recommended therapeutic doses, this study was conducted to examine the effects of lovastatin on the histology and proteome profile of goat skeletal muscle. A total of 20 intact male Saanen goats were randomly assigned in equal numbers to 4 groups, and fed with a total mixed ration containing 50% rice straw, 22.8% concentrates and 27.2% of various proportions of untreated or treated palm kernel cake (PKC) to achieve the target daily intake levels of 0 (Control), 2 (Low), 4 (Medium) or 6 (High) mg lovastatin/kg body weight (BW). Histological examination discovered that the longissimus thoracis et lumborum muscle of animals from the Medium and High treatment groups showed abnormalities in terms of necrosis, degeneration, interstitial space and vacuolation. Western blot analysis conducted on the myosin heavy chain showed that the immunoreactivity of myosin heavy chain in the High treatment group was significantly lower than the Control, Low and Medium treatment groups. Comparisons between control and lovastatin-treated groups demonstrated that lovastatin supplementation induced complex modifications to the protein expression patterns of the longissimus thoracis et lumborum muscle of the goat. There were 30, 26 and 24 proteins differentially expressed in Low, Medium and High treatment groups respectively, when compared to the Control group. Supplementation of lovastatin down-regulated proteins involved in carbohydrate and creatine metabolism, indicative of reduced energy production, and may have contributed to the skeletal muscle damage. Supplementation of naturally produced lovastatin induced muscle damage in longissimus thoracis et lumborum muscle of goats with increasing dosages, particularly at 6mg/kg BW. In addition, proteomics analysis revealed that lovastatin supplementation induced complex modifications to the protein expressions of skeletal muscle of goats which may have contributed to the observed skeletal muscle damage. Present study suggested that supplementation of naturally-produced lovastatin at 6mg/kg BW could adversely affecting health and wellbeing of the animals

    Oil supplementation improved growth and diet digestibility in goats and sheep fed fattening diet

    Get PDF
    Objective This study evaluated the growth, digestibility and rumen fermentation between goats and sheep fed a fattening diet fortified with linseed oil. Methods Twelve 3 to 4 months old male goats and sheep were randomly allocated into two dietary treatment groups in a 2 (species)×2 (oil levels) factorial experiment. The treatments were: i) goats fed basal diet, ii) goats fed oil-supplemented diet, iii) sheep fed basal diet, and iv) sheep fed oil-supplemented diet. Each treatment group consisted of six animals. Animals in the basal diet group were fed with 30% alfalfa hay and 70% concentrates at a rate equivalent to 4% of their body weight. For the oil treatment group, linseed oil was added at 4% level (w:w) to the concentrate portion of the basal diet. Growth performance of the animals was determined fortnightly. Digestibility study was conducted during the final week of the feeding trial before the animals were slaughtered to obtain rumen fluid for rumen fermentation characteristics study. Results Sheep had higher (p<0.01) average daily weight gain (ADG) and better feed conversion ratio (FCR) than goats. Oil supplementation did not affect rumen fermentation in both species and improved ADG by about 29% and FCR by about 18% in both goats and sheep. The above enhancement is consistent with the higher dry matter and energy digestibility (p<0.05), as well as organic matter and neutral detergent fiber digestibility (p<0.01) in animals fed oil- supplemented diet. Sheep had higher total volatile fatty acid production and acetic acid proportion compared to goat. Conclusion The findings of this study suggested that sheep performed better than goats when fed a fattening diet and oil supplementation at the inclusion rate of 4% provides a viable option to significantly enhance growth performance and FCR in fattening sheep and goats

    Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: A review

    Get PDF
    Understanding the nature of ruminant nutrition and digestion is essential to improve feeding management and animal production. Among many approaches, manipulating ruminant nutrition and fermentation through feed supplementation is being practised and researched. Over the last decade, the utilization of vegetable oils in feed formulation and their efects on various aspects of ruminants have been reported by many researchers. It is important to understand the lipid metabolism in ruminants by microorganisms because it afects the quality of ruminant-derived products such as meat and milk. Majority of vegetable oil supplementation could reduce rumen protozoa population in ruminants due to the efects of medium-chain fatty acids (FAs). However, vegetable oil also contains unsaturated FAs that are known to have a negative efect on cellulolytic bacteria which could show inhibitory efects of the fbre digestion. In this paper, the physiology of nutrient digestion of ruminants is described. This paper also provides a current review of studies done on improvement and modifcation of rumen fermentation and microbial population through vegetable oil supplementation

    Effects of naturally-produced lovastatin on carcass characteristics, muscle physico-chemical properties and lipid oxidation and cholesterol content in goats

    Get PDF
    This study investigated the carcass characteristics, physico-chemical properties, storage stability and cholesterol content of meat from goats fed with different levels of naturally-produced lovastatin used to mitigate enteric methane production. Twenty intact Saanen male goats of 5-6 months old with initial live weight of 25.8 ± 4.0 kg were randomly allotted into four dietary treatments containing 0 (Control), 2 (Low), 4 (Medium) and 6 mg (High) per kg live weight (LW) of naturally-produced lovastatin for 12 consecutive weeks. No differences were found in all the parameters measured except for full LW, hot and cold carcass weight, shear force, color and cholesterol content among the treatment groups. Aging had significant effects on all the parameters measured in this study except a* (redness) of meat. Meat samples in the Medium and High treatments were of higher lightness and yellowness, more tender and lower cholesterol levels. We conclude that, in addition to mitigate enteric methane emissions, dietary supplementation of naturally-produced lovastatin at 4 mg/kg LW could be a feasible feeding strategy to produce tender meat containing lower cholesterol

    Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period

    Get PDF
    Twenty male Saanen goats were randomly assigned to four levels of lovastatin supplementation and used to determine the optimal dosage and sustainability of naturally produced lovastatin from fermentation of palm kernel cake (PKC) with Aspergillus terreus on enteric methane (CH4) mitigation. The effects on ruminal microbiota, rumen fermentation, feed digestibility and health of animal were determined over three measuring periods (4-, 8- and 12-weeks) and the accumulation of lovastatin in tissues was determined at the end of the experiment. The diets contained 50% rice straw, 22.8% concentrates and 27.2% of various proportions of untreated or treated PKC to achieve the target daily intake level of 0 (Control), 2, 4 or 6 mg lovastatin/kg body weight (BW). Enteric CH4 emissions per dry matter intake (DMI), decreased significantly (P<0.05) and equivalent to 11% and 20.4%, respectively, for the 2 and 4 mg/kg BW groups as compared to the Control. No further decrease in CH4 emission thereafter with higher lovastatin supplementation. Lovastatin had no effect on feed digestibility and minor effect on rumen microbiota, and specifically did not reduce the populations of total methanogens and Methanobacteriales (responsible for CH4 production). Similarly, lovastatin had little effect on rumen fermentation characteristics except that the proportion of propionate increased, which led to a decreasing trend (P<0.08) in acetic: propionate ratio with increasing dosage of lovastatin. This suggests a shift in rumen fermentation pathway to favor propionate production which serves as H+ sink, partly explaining the observed CH4 reduction. No adverse physiological effects were noted in the animals except that treated PKC (containing lovastatin) was less palatable at the highest inclusion level. Lovastatin residues were detected in tissues of goats fed 6 mg lovastatin/kg BW at between 0.01 to 0.03 μg/g, which are very low

    Rumen fermentation, fatty acid profiles, meat quality and adipogenesis related gene expression of goat and sheep fed with high concentrated diet

    Get PDF
    The small ruminant (goats and sheep) industry in Malaysia can be described as slow growing as compared to the demand for the products. On the other hand, ruminant products are known to contain high amount of saturated fatty acids (SFA) which are often implicated as a source of modern-day diseases. To date, limited comparative studies have been carried out to characterize differences between goats and sheep, hence the two species are often assumed to be similar and thus raised and managed similarly. To meet the local demand, there is a need to improve the productivity of the small ruminant industry, by optimizing the growth protential of each animal species; and at the same time, to produce healthier meat and meat products. It is hypothesized that the feeding of high concentrate diet supplemented with linseed oil as a source of polyunsaturated fatty acids (PUFA), could improve the growth rate of the animals and at the same time, fortifying the meat and products with health beneficial PUFA. The primary objectives of this thesis were to co-compare rumen fermentation characteristics, growth performance, meat quality attributes and fatty acids profile in tissues of goat and sheep fed high concentrate fattening diet, with and without supplementation of PUFA; and to infer the differences in fatty acids profile due to the dietary treatments and animal species (goats vs sheep) through the expression of adipogenesis related genes. Three experiments were conducted to achieve the above objectives. In the first experiment, in vitro rumen fermentation characteristics in goats and sheep with or without PUFA added to the substrate were evaluated. Results showed superior fermentation characteristics in goats with higher in vitro gas production rate (P<0.001), accompanied by higher volatile fatty acids (VFA) production and in vitro organic matter digestibility (P<0.05). The higher population of total bacteria and two major cellulolytic bacteria (Ruminococcus albus and Butyrivibrio fibrisolvens) in goat compared to sheep also indicates higher digestive capability in goats. The addition of 4% linseed oil to the substrate did not show any negative effect on fermentation characteristics nor the VFA production, suggesting that the level oil was appropriate. Experiment 2 consisted of a 100-day feeding trial to determine the growth performance, digestibility and meat quality attributes of goats and sheep fed fattening diet with or without oil supplementation, in a 2 species x 2 diets factorial experiment with 6 animals (replicates) per treatment. Results of the study showed that irrespective of diet, sheep had better body weight gain (BWG) and feed efficiency (FE) compared to goats. Overall, supplementation of linseed oil at 29 g/day improved BWG by about 65 g/day (45% improvement over the control) and FE by 15% (5.01 vs 5.93). There was no species difference (except for crude protein) and no effect of dietary treatments on apparent digestibility. Goat meat had better quality attributes (P<0.001), including lower lipid oxidation and higher water holding capacity than sheep. Linseed oil supplementation did not affect meat lipid oxidation, indicating that the level of supplementation was appropriate. The fatty acids profile in various tissue, in vivo rumen fermentation and expression of adipogenesis related genes from the above feeding trial are reported in Chapter 5 with the objective of determining whether differences exist in fatty acids profile in goats and sheep fed similar diets and to elucidate the possible mechanisms for any differences exist. Results of the study showed that there were significant differences in the fatty acids profile in the longissimus dorsi (LD) muscle, subcutaneous (SC) fat and liver tissue between species and between dietary treatments. Although no species differences were observed in the total SFA, MUFA and PUFA content in the LD muscle, several individual fatty acids were significantly different between species, including higher n-3 PUFA in LD muscle of goats. Sheep had higher total SFA content but lower UFA in the SC fat and liver tissue. Linseed oil supplementation increased the linolenic acid content by 4.5 to 6.1 folds in the tissues samples analyzed suggesting oil supplementation provides a viable approach to enrich meat and ruminant products with essential PUFA. The result of the in vivo rumen fermentation characteristics explained for the differences in the fatty acids profile between species. The higher production of total VFA and acetic acid (primary precursor in fatty acid synthesis) in sheep suggest higher lipogenesis activity, and explained for the higher SFA content. The higher population of B. fibrisolvens in sheep than goats, which on the other hand had higher population of total methanogens and methanobacteriales, explained for the higher biohydrogenation intermediate in sheep. Relative expressions of adipogenesis related genes were used to elucidate the differences in the fatty acids profile between species and dietary treatment. The study found that, irrespective of diet, sheep had higher expression of fatty acid synthase gene (FASN) gene and also higher Acetyl- CoA carboxylase gene (ACACA) with oil supplementation. The higher expression of the above genes led to higher production of SFA content (especially palmitic acid) in the SC fat and liver tissue in sheep. Stearoyl-CoA desaturase (SCD) gene, which responsibles for the unsaturation of SFA, was lower in sheep than goats and was further downregulated with the addition of oil, which explains for the lower mono-unsaturated fatty acids (MUFA) content in sheep and in the oil supplemented group. On the other hand, peroxisome proliferator-activated receptor alpha (PPARα), which serves as the transcriptional factor for many lipogenic genes, is negatively correlated with ACACA and FASN genes. Therefore the downregulation of PPARα gene was accompanied by upregulation of ACACA and FASN genes in sheep and the opposite in goats, accounting for the different SFA production between species. Result of this thesis suggests that high concentrate feeding supplemented with PUFA (linseed oil at 4% level) is an applicable approach to improve the growth performance of small ruminants, and to produce healthier meat with beneficial fatty acids profile, without detrimental effect on rumen fermentation or meat quality attributes. Species differences in fatty acids profile were partly influenced by the various lipogenic genes expression and therefore, dietary manipulation of adipogenesis related genes expression (nutrigenomics) can be a useful tool especially in reducing the SFA content, in order to produce healthier ruminant meat and meat products
    corecore