18 research outputs found

    A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae.

    Get PDF
    Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications

    Honey health benefits and uses in medicine

    Get PDF
    The generation of reactive oxygen species (ROS) and other free radicals during metabolism is an essential and normal process that ideally is compensated through the antioxidant system. However, due to many environmental, lifestyle, and pathological situations, free radicals and oxidants can be produced in excess, resulting in oxidative damage of biomolecules (e.g., lipids, proteins, and DNA). This plays a major role in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular, and neurodegenerative diseases (Pham-Huy et al. 2008; Willcox et al. 2004). The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally synthetized in situ, or externally supplied through foods, and/or supplements (Pham-Huy et al. 2008).info:eu-repo/semantics/publishedVersio

    Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate

    No full text
    Hydroxytyrosol (HyT) is a polyphenol primarily released in olive mill wastewater and in olive oil. In animal and cell model studies, HyT and its metabolites have strong antioxidant and antimicrobial activities, as well as beneficial effects on the cardiovascular system and in several human diseases. Differently, many researchers reported that HyT down-regulates tumor cell viability and cell cycle progression, and induces reactive oxygen species (ROS) production and apoptosis.In this study we have investigated the effects of HyT and the corresponding ester hydroxytyrosyl laurate in U937 cells, a human monocytoid cell line, and in C2C12 myoblasts, a murine proliferating muscle cell model, after apoptotic death induction. Inverted, light and transmission electron microscopy have been utilized to characterize cell death patterns. H2O2, at the concentrations known to induce apoptosis, was utilized as cell death trigger. The results obtained show that laur-HyT has a protective antioxidant effect against H2O2 treatment, greater than HyT, so having a role in the prevention of apoptotic death in normal and tumor cells. These data suggest these compounds as good candidate for novel therapeutic strategies. © 2013 Elsevier Ltd
    corecore