56 research outputs found

    Epigenetic Approaches in Neuroblastoma Disease Pathogenesis

    Get PDF
    Neuroblastoma is an embryonal extracranial solid tumor originating from undifferentiated neural crest cell and it is the most common among children. Neuroblastoma is highly heterogeneous, and on these bases different outcomes are observed across the subtypes. Its clinical impact (~13% of all pediatric cancer mortality) has made this aggressive malignancy the focus of a considerable translational research effort. New insights into tumor biology are leading to the development of novel therapeutic approaches, which include small-molecule inhibitors as well as epigenetic approaches, noncoding-RNA, and cell-based immunologic therapies. Recently, chromatin immunoprecipitation with high-throughput sequencing and RNA-sequencing studies have demonstrated that epigenetic changes contribute to the aggressive pathophysiology of pediatric neuroblastoma disease. Epigenetic abnormalities are feature of human cancer cells and the epigenetic alterations may be the key toward tumorigenesis. In particular, the increase of deacetylation has been involved in epigenetically mediated tumor-suppressor gene silencing. In addition, several studies evaluated the 5-methylcytosine (5 mC) distribution patterns, which distinguish cancer cells from normal cells, and how CpG methylation contributes to the oncogenic phenotype

    Chronic Trazodone and Citalopram Treatments Increase Trophic Factor and Circadian Rhythm Gene Expression in Rat Brain Regions Relevant for Antidepressant Efficacy

    Get PDF
    Abstract: Trazodone is an efficacious atypical antidepressant acting both as an SSRI and a 5HT2A and 5HT2C antagonist. Antagonism to H1-histaminergic and alpha1-adrenergic receptors is responsible for a sleep-promoting action. We studied long-term gene expression modulations induced by chronic trazodone to investigate the molecular underpinning of trazodone efficacy. Rats received acute or chronic treatment with trazodone or citalopram. mRNA expression of growth factor and circadian rhythm genes was evaluated by qPCR in the prefrontal cortex (PFCx), hippocampus, Nucleus Accumbens (NAc), amygdala, and hypothalamus. CREB levels and phosphorylation state were evaluated using Western blotting. BDNF levels were significantly increased in PFCx and hippocampus by trazodone and in the NAc and hypothalamus by citalopram. Likewise, TrkB receptor levels augmented in the PFCx after trazodone and in the amygdala after citalopram. FGF-2 and FGFR2 levels were higher after trazodone in the PFCx. The CREB phosphorylation state was increased by chronic trazodone in the PFCx, hippocampus, and hypothalamus. Bmal1 and Per1 were increased by both antidepressants after acute and chronic treatments, while Per2 levels were specifically augmented by chronic trazodone in the PFCx and NAc, and by citalopram in the PFCx, amygdala, and NAc. These findings show that trazodone affects the expression of neurotrophic factors involved in antidepressant responses and alters circadian rhythm genes implicated in the pathophysiology of depression, thus shedding light on trazodone’s molecular mechanism of actio

    Targeting the JAK/STAT Pathway: A Combined Ligand- And Target-Based Approach

    Get PDF
    Janus kinases (JAKs) are a family of proinflammatory enzymes able to mediate the immune responses and the inflammatory cascade by modulating multiple cytokine expressions as well as various growth factors. In the present study, the inhibition of the JAK-signal transducer and activator of transcription (STAT) signaling pathway is explored as a potential strategy for treating autoimmune and inflammatory disorders. A computationally driven approach aimed at identifying novel JAK inhibitors based on molecular topology, docking, and molecular dynamics simulations was carried out. For the best candidates selected, the inhibitory activity against JAK2 was evaluated in vitro. Two hit compounds with a novel chemical scaffold, 4 (IC50 = 0.81 μM) and 7 (IC50 = 0.64 μM), showed promising results when compared with the reference drug Tofacitinib (IC50 = 0.031 μM).This study was funded by the University of Valencia and Generalitat Valenciana (GVA) through postdoctoral grants no. UVINV_POSTDOC18-785681 and APOSTD/2019/055 (M.G-L.) and by the University of Bologna through research grant no. RFO2019 (P.R., S.C., and M.R.)

    On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms

    Get PDF
    Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.This work was supported by a grant from the Italian Ministry of Education, University and Research. S.G., PhD fellowship grants were awarded from the Italian Ministry of Education, University and Research. L.R. and F.V. postdoctoral fellowship grant was cofounded by D.C., M.P., S.C., and P.R.; I.C-C. was supported by a postdoctoral fellowship from the Andalusian Government Ministry of Economy, Knowledge, Business, and University (DOC_00587/2020).Peer reviewe

    Farmacodinamica Parte A

    No full text
    • …
    corecore