47 research outputs found

    Glutathione Provides a Source of Cysteine Essential for Intracellular Multiplication of Francisella tularensis

    Get PDF
    Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation

    Gravitational Lensing from a Spacetime Perspective

    Full text link

    Potential impacts of climate change on groundwater supplies to the Doñana wetland, Spain

    Get PDF
    Climate change impacts on natural recharge and groundwater-wetland dynamics were investigated for the Almonte-Marismas aquifer, Spain, which supports the internationally important Doñana wetland. Simulations were carried out using outputs from 13 global climate models to assess the impacts of climate change. Reductions in flow from the aquifer to streams and springs flooding the wetland, induced by changes in recharge according to different climate projections, were modelled. The results project that the change in climate by the 2080s, under a medium-high greenhouse gas emissions scenario, leads to a reduction in groundwater resources. The reduction in mean recharge ranges from 14%–57%. The simulations show that there is an impact on hydraulic head in terms of the overall water table configuration with decreases in groundwater level ranging from 0–17 m. Most simulations produce lower discharge rates from the aquifer to stream basins, with significant reductions in the larger La Rocina (between −55% and −25%) and Marismas (between −68% and −43%) catchments. Water flows from these two basins are critical to maintain aquatic life in the wetland and riparian ecosystems. Modelled climate-induced reductions in total groundwater discharge to the surface are generally larger than current groundwater abstraction rates. The results highlight that effective strategies for groundwater resources management in response to future climate change are imperative

    Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli

    No full text
    Real-time polymerase chain reaction (PCR)-based methodology for the determination of rRNA gene (rrn) copy number was introduced and demonstrated. Both absolute and relative quantifications were tested with Escherichia coli. The separate detection of rRNA gene and chromosomal DNA was achieved using two primer sets, specific for 16S rRNA gene and for D-1-deoxyxylulose 5-phosphate synthase gene (dxs), respectively. As dxs is a single-copy gene of E. coli chromosomal DNA, the rrn copy number can be determined as the copy ratio of rrn to dxs. This methodology was successfully applied to determine the rrn copy number in E. coli cells. The results from absolute and relative quantifications were identical and highly reproducible with coefficient of variation (CV) values of 1.8-4.6%. The estimated rrn copy numbers also corresponded to the previously reported value in E. coli (i.e., 7), indicating that the results were reliable. The methodology introduced in this study is faster and cost-effective without safety problems compared to the traditionally used Southern blot analysis. The fundamentals in our methodology would be applicable to any microorganism, as long as having the sequence information of the rRNA gene and another chromosomal gene with a known copy number.close434

    Why large porphyry Cu deoposits like high Sr/Y magmas

    Get PDF
    Porphyry systems supply most copper and significant gold to our economy. Recent studies indicate that they are frequently associated with high Sr/Y magmatic rocks, but the meaning of this association remains elusive. Understanding the association between high Sr/Y magmatic rocks and porphyry-type deposits is essential to develop genetic models that can be used for exploration purposes. Here we present results on a Pleistocene volcano of Ecuador that highlight the behaviour of copper in magmas with variable (but generally high) Sr/Y values. We provide indirect evidence for Cu partitioning into a fluid phase exsolved at depths of ~15 km from high Sr/Y (>70) andesitic magmas before sulphide saturation. This lends support to the hypothesis that large amounts of Cu- and S-bearing fluids can be accumulated into and released from a long-lived high Sr/Y deep andesitic reservoir to a shallower magmatic-hydrothermal system with the potential of generating large porphyry-type deposits
    corecore