60 research outputs found

    Digital Twin Mathematical Models Suggest Individualized Hemorrhagic Shock Resuscitation Strategies

    Get PDF
    BACKGROUND: Optimizing resuscitation to reduce inflammation and organ dysfunction following human trauma-associated hemorrhagic shock is a major clinical hurdle. This is limited by the short duration of pre-clinical studies and the sparsity of early data in the clinical setting. METHODS: We sought to bridge this gap by linking preclinical data in a porcine model with clinical data from patients from the Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) study via a three-compartment ordinary differential equation model of inflammation and coagulation. RESULTS: The mathematical model accurately predicts physiologic, inflammatory, and laboratory measures in both the porcine model and patients, as well as the outcome and time of death in the PROMMTT cohort. Model simulation suggests that resuscitation with plasma and red blood cells outperformed resuscitation with crystalloid or plasma alone, and that earlier plasma resuscitation reduced injury severity and increased survival time. CONCLUSIONS: This workflow may serve as a translational bridge from pre-clinical to clinical studies in trauma-associated hemorrhagic shock and other complex disease settings

    Combat and Operational Stress Control: Application in a Burn Center

    No full text
    Occupational therapy has been integral to the holistic recovery of soldiers since its origin. The positive psychosocial and physiological effects of occupation-based interventions, fundamental to the profession, have long justified its relevance to the military. As such, occupational therapy has been written into US Army doctrine as an integral component of the Combat and Operational Stress Control (COSC) program. The focus of a COSC unit is to prevent, identify, reduce, and manage combat and operational stress reactions resulting from physical and mental stressors in a combat environment. COSC centers around the recognition and resolution of functional problems and the development of enhanced coping skills. Recognizing that burn patients are, like combatants, also at high risk of stress-related illness, we applied COSC concepts to peacetime burn care. In this paper we describe the theoretical basis for COSC in a burn center. The COSC model supports holistic, functional recovery of the burn casualty and can augment psychosocial recovery, particularly in times of limited resources

    Airplane Crash in Guam, August 6, 1997: The Aeromedical Evacuation Response

    No full text

    HMGB1 Inhibition to Ameliorate Organ Failure and Increase Survival in Trauma

    No full text
    Several preclinical and clinical reports have demonstrated that levels of circulating high mobility group box 1 protein (HMGB1) are increased early after trauma and are associated with systemic inflammation and clinical outcomes. However, the mechanisms of the interaction between HMGB1 and inflammatory mediators that lead to the development of remote organ damage after trauma remain obscure. HMGB1 and inflammatory mediators were analyzed in plasma from 54 combat casualties, collected on admission to a military hospital in Iraq, and at 8 and 24 h after admission. In total, 45 (83%) of these patients had traumatic brain injury (TBI). Nine healthy volunteers were enrolled as controls. HMGB1 plasma levels were significantly increased in the first 8 h after admission, and were found to be associated with systemic inflammatory responses, injury severity score, and presence of TBI. These data provided the rationale for designing experiments in rats subjected to blast injury and hemorrhage, to explore the effect of HMGB1 inhibition by CX-01 (2-O, 3-O desulfated heparin). Animals were cannulated, then recovered for 5–7 days before blast injury in a shock tube and volume-controlled hemorrhage. Blast injury and hemorrhage induced an early increase in HMGB1 plasma levels along with severe tissue damage and high mortality. CX-01 inhibited systemic HMGB1 activity, decreased local and systemic inflammatory responses, significantly reduced tissue and organ damage, and tended to increase survival. These data suggest that CX-01 has potential as an adjuvant treatment for traumatic hemorrhage

    Immunopathological Alterations after Blast Injury and Hemorrhage in a Swine Model of Prolonged Damage Control Resuscitation

    No full text
    Trauma-related hemorrhagic shock (HS) remains a leading cause of death among military and civilian trauma patients. We have previously shown that administration of complement and HMGB1 inhibitors attenuate morbidity and mortality 24 h after injury in a rat model of blast injury (BI) and HS. To further validate these results, this study aimed to develop a swine model and evaluate BI+HS-induced pathophysiology. Anesthetized Yucatan minipigs underwent combined BI and volume-controlled hemorrhage. After 30 min of shock, animals received an intravenous bolus of PlasmaLyte A and a continuous PlasmaLyte A infusion. The survival rate was 80% (4/5), and the non-survivor expired 72 min post-BI. Circulating organ-functional biomarkers, inflammatory biomarkers, histopathological evaluation, and CT scans indicated evidence of multiple-organ damage, systemic innate immunological activation, and local tissue inflammation in the injured animals. Interestingly, a rapid and dramatic increase in plasma levels of HMGB1 and C3a and markedly early myocarditis and encephalitis were associated with early death post-BI+HS. This study suggests that this model reflects the immunopathological alterations of polytrauma in humans during shock and prolonged damage control resuscitation. This experimental protocol could be helpful in the assessment of immunological damage control resuscitation approaches during the prolonged care of warfighters
    • …
    corecore