68 research outputs found

    Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches

    Get PDF
    Heat shock proteins (HSPs) are a well-characterized molecular chaperones protein family, classified into six major families, according to their molecular size. A wide range of tumors have been shown to express atypical levels of one or more HSPs, suggesting that they could be used as biomarkers. However, the collective role and the possible coordination of HSP members, as well as the prognostic significance and the functional implications of their deregulated expression in breast cancer (BC) are poorly investigated. Here, we used a systematic multi-omics approach to assess the HSPs expression, the prognostic value, and the underlying mechanisms of tumorigenesis in BC. By using data mining, we showed that several HSPs were deregulated in BC and significantly correlated with a poor or good prognosis. Functional network analysis of HSPs co-expressed genes and miRNAs highlighted their regulatory effects on several biological pathways involved in cancer progression. In particular, these pathways concerned cell cycle and DNA replication for the HSPs co-expressed genes, and miRNAs up-regulated in poor prognosis and Epithelial to Mesenchymal Transition (ETM), as well as receptors-mediated signaling for the HSPs co-expressed genes upregulated in good prognosis. Furthermore, the proteomic expression of HSPs in a large sample-set of breast cancer tissues revealed much more complexity in their roles in BC and showed that their expression is quite variable among patients and confined into different cellular compartments. In conclusion, integrative analysis of multi-omics data revealed the distinct impact of several HSPs members in BC progression and indicate that collectively they could be useful as biomarkers and therapeutic targets for BC management

    Juvenile Dermatomyositis: what comes next? Long-term outcomes in childhood myositis from a patient perspective

    Get PDF
    BACKGROUND: To describe long-term outcomes in JDM using patient questionnaires and link to longitudinal, prospectively collected data for each patient within the Juvenile Dermatomyositis Cohort and Biomarker Study, UK and Ireland (JDCBS) to determine outcome predictors.  METHODS: JDCBS participants aged ≥ 16y completed the SF36, HAQ and a questionnaire regarding current disease features, medications, education and employment. Data collected from the JDCBS included disease subtype, demographics, clinical and laboratory features. Intensity indices were calculated for physician VAS, modified skin DAS, CMAS and MMT8 by dividing area under the curve (AUC) from longitudinal score trajectories by duration of study follow-up (y). Relationships between questionnaire and JDCBS clinical / laboratory data were investigated fitting statistical models appropriate for cross sectional and longitudinal data. RESULTS: Of 190 questionnaires sent, 84 (44%) were returned. Average age of respondents was 20.6 years (SD 3.9), time since diagnosis was 12.4 years (SD 5.0), age at onset was 9.2 years (SD 4.3), female to male ratio 4.25:1. Forty-nine (59%) self-reported persistently active disease, 54 (65%) were still taking immunosuppressive medication. 14/32 at school/higher education reported myositis adversely affecting academic results. 18–24 year-olds were twice as likely to be unemployed compared the UK population (OR = 0.456, 95% CI 0.24, 0.84, p = 0.001). Participants ≥ 18 years were three times as likely to be living with a parent/guardian (OR = 3.39, p < 0.001). SF36 MCS and MMT8 intensity index scores were significantly correlated (ρ = 0.328, p = 0.007). CONCLUSIONS: After 12.4 years, questionnaire responders reported self-perceived high rates of persistently active disease and medication use, reduced rates of employment and were more likely to live with a parent/guardian. Perceived persistently active muscle disease appeared to affect quality of life in these patients and was the most significant contributor to long-term outcomes. Our findings highlight the importance of including the patient perspective in the assessment of long term outcomes, so that that we can start to target initial management strategies more effectively based on a combination of clinical and patient-reported data

    Decorin transfection induces proteomic and phenotypic modulation in breast cancer cells 8701-BC

    Get PDF
    Decorin is a prototype member of the small leucine-rich proteoglycan family widely distributed in the extracellular matrices of many connective tissues, where it has been shown to play multiple important roles in the matrix assembly process, as well as in some cellular activities. A major interest for decorin function concerns its role in tumorigenesis, as growth-inhibitor of different neoplastic cells, and potential antimetastatic agent. The aim of our research was to investigate wide-ranged effects of transgenic decorin on breast cancer cells. To this purpose we utilized the well-characterized 8701-BC cell line, isolated from a ductal infiltrating carcinoma of the breast, and two derived decorin-transfected clones, respectively, synthesizing full decorin proteoglycan or its protein core. The responses to the ectopic decorin production were examined by studying morphological changes, cell proliferation rates, and proteome modulation. The results revealed new important antioncogenic potentialities, likely exerted by decorin through a variety of distinct biochemical pathways. Major effects included the downregulation of several potential breast cancer biomarkers, the reduction of membrane ruffling, and the increase of cell-cell adhesiveness. These results disclose original aspects related to the reversion of malignant traits of a prototype of breast cancer cells induced by decorin. They also raise additional interest for the postulated clinical application of decori

    Distributional coding of associative learning in discrete populations of midbrain dopamine neurons

    Get PDF
    Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions

    Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain

    Get PDF
    Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brainextracted myelin were produced. The MyVes have an average diameter of 100-150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The MyVes were able to target the white matter and interact mainly with the microglia cells. The preliminary results here presented allow us to suppose the employment of MyVes as potential carrier to target the white matter and microglia in order to counteract white matter microglia-related diseases
    corecore