411 research outputs found

    Three-dimensional dispersion induced by extreme tensile strain in La_(2–x)Sr_xCuO_4 films

    Get PDF
    The electronic band structure probed by angle-resolved photoemission spectroscopy on thin epitaxial La2–xSrxCuO4 films under extreme tensile strain shows anomalous features compatible with c-axis dispersion. This result is in striking contrast with the usual quasi-two-dimensional (2D) dispersion observed up to now in most superconducting cuprates, including relaxed and compressively strained La2–xSrxCuO4 films grown under the same conditions. The data were analyzed using a 3D tight-binding dispersion for a body-centered-tetragonal lattice. We relate the enhancement of the c-axis dispersion to the significant displacement of the apical oxygen induced by epitaxial strain

    Linear and nonlinear coupling of quantum dots in microcavities

    Full text link
    We discuss the topical and fundamental problem of strong-coupling between a quantum dot an the single mode of a microcavity. We report seminal quantitative descriptions of experimental data, both in the linear and in the nonlinear regimes, based on a theoretical model that includes pumping and quantum statistics.Comment: Proceedings of the symposium Nanostructures: Physics and Technology 2010 (http://www.ioffe.ru/NANO2010), 2 pages in proceedings styl

    Growth-induced electron mobility enhancement at the LaAlO3_3/SrTiO3_3 interface

    Full text link
    We have studied the electronic properties of the 2D electron liquid present at the LaAlO3_3/SrTiO3_3 interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{\deg}C exhibit the highest low temperature mobility (≈10000 cm2/Vs\approx 10000 \textrm{ cm}^2/\textrm{Vs}) and the lowest sheet carrier density (≈5×1012 cm−2\approx 5\times 10^{12} \textrm{ cm}^{-2}). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{\deg}C) display carrier densities in the range of ≈2−5×1013 cm−2\approx 2-5 \times 10^{13} \textrm{ cm}^{-2} and mobilities of ≈1000 cm2/Vs\approx 1000 \textrm{ cm}^2/\textrm{Vs} at 4K. Reducing their carrier density by field effect to 8×1012 cm−28\times 10^{12} \textrm{ cm}^{-2} lowers their mobilites to ≈50 cm2/Vs\approx 50 \textrm{ cm}^2/\textrm{Vs} bringing the conductance to the weak-localization regime

    Tunable Rashba spin-orbit interaction at oxide interfaces

    Full text link
    The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system

    Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces

    Full text link
    We report on a study of magnetotransport in LaAlO3/SrTiO3 interfaces characterized by mobilities of the order of several thousands cm2^{2}/Vs. We observe Shubnikov-de Haas oscillations that indicate a two-dimensional character of the Fermi surface. The frequency of the oscillations signals a multiple sub-bands occupation in the quantum well or a multiple valley configuration. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass m∗≃1.45m^{*}\simeq1.45\,mem_{e}. An electric field applied in the back-gate geometry increases the mobility, the carrier density and the oscillation frequency.Comment: 4 pages, 4 figure

    Drag in a resonantly driven polariton fluid

    Get PDF
    We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect

    The transbonchial lung biopsy for diagnosis of diffuse parenchymal lung disease; Pro

    Get PDF
    The diagnosis of diffuse parenchymal lung disease (DPLD) may require invasive procedures after all noninvasive tools have failed. The clinical context in which these diseases develop and the radiological patterns are crucial for defining the timing and the methods to be used. After the introduction in clinical practice of HRCT scan, the evaluation of imaging patterns, along with the immunological status of the patient and the clinical course of the disease (acute vs. chronic) seem to be crucial to choose the best diagnostic procedure

    Nanodot-Cavity Electrodynamics and Photon Entanglement

    Full text link
    Quantum electrodynamics of excitons in a cavity is shown to be relevant to quantum operations. We present a theory of an integrable solid-state quantum controlled-phase gate for generating entanglement of two photons using a coupled nanodot-microcavity-fiber structure. A conditional phase shift of O(Ï€/10)O(\pi/10) is calculated to be the consequence of the giant optical nonlinearity keyed by the excitons in the cavities. Structural design and active control, such as electromagnetic induced transparency and pulse shaping, optimize the quantum efficiency of the gate operation.Comment: 4 pages 3 figure

    Adenocarcinoma classification: patterns and prognosis

    Get PDF
    Lung cancer is the most frequent human malignancy and the principal cause of cancer-related death worldwide. Adenocarcinoma is now the main histologic type, accounting for almost half of all the cases. The 2015 World Health Organization has adopted the classification recently developed by the International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society. This new adenocarcinoma classification has incorporated up-to-date advances in radiological, molecular and oncological knowledge, providing univocal diagnostic criteria and terminology. For resection specimens, new entities have been defined such as adenocarcinoma in situ and minimally invasive adenocarcinoma to designate adenocarcinomas, mostly nonmucinous and ≤ 3 cm in size, with either pure lepidic growth or predominant lepidic growth with ≤ 5 mm invasion, respectively. For invasive adenocarcinoma, the new classification has introduced histological subtyping according to the predominant pattern of growth of the neoplastic cells: lepidic (formerly non mucinous brochioloalveolar adenocarcinoma), acinar, papillary, micropapillary, and solid. Of note, micropapillary pattern is a brand new histologic subtype. In addition, four variants of invasive adenocarcinoma are recognized, namely invasive mucinous (formerly mucinous brochioloalveolar adenocarcinoma), colloid, fetal, and enteric. Importantly, three variants that were considered in the previous classification have been eliminated, specifically mucinous cystadenocarcinoma, signet ring cell, and clear cell adenocarcinoma. This review presents the changes introduced by the current histological classification of lung adenocarcinoma and its prognostic implications

    Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function

    Get PDF
    An analysis of the Wigner function for identical particles is presented. Four situations have been considered. i) A scattering process between two indistinguishable electrons described by a minimum uncertainty wave packets showing the exchange and correlation hole in Wigner phase space. ii) An equilibrium ensemble of N electrons in a one-dimensional box and in a one-dimensional harmonic potential showing that the reduced single particle Wigner function as a function of the energy defined in the Wigner phase-space tends to a Fermi distribution. iii) The reduced one-particle transport-equation for the Wigner function in the case of interacting electrons showing the need for the two-particle reduced Wigner function within the BBGKY hierarchy scheme. iv) The electron-phonon interaction in the two-particle case showing co-participation of two electrons in the interaction with the phonon bath
    • …
    corecore