40 research outputs found

    An analysis of the field theoretic approach to the quasi-continuum method

    Full text link
    Using the orbital-free density functional theory as a model theory, we present an analysis of the field theoretic approach to quasi-continuum method. In particular, by perturbation method and multiple scale analysis, we provide a formal justification for the validity of the coarse-graining of various fields, which is central to the quasi-continuum reduction of field theories. Further, we derive the homogenized equations that govern the behavior of electronic fields in regions of smooth deformations. Using Fourier analysis, we determine the far-field solutions for these fields in the presence of local defects, and subsequently estimate cell-size effects in computed defect energies.Comment: 26 pages, 1 figur

    Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation

    Full text link
    We consider a generalized Dirac-Fock type evolution equation deduced from no-photon Quantum Electrodynamics, which describes the self-consistent time-evolution of relativistic electrons, the observable ones as well as those filling up the Dirac sea. This equation has been originally introduced by Dirac in 1934 in a simplified form. Since we work in a Hartree-Fock type approximation, the elements describing the physical state of the electrons are infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced by Chaix-Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989), and recently established by Hainzl-Lewin-Sere, we prove the existence of global-in-time solutions of the considered evolution equation.Comment: 12 pages; more explanations added, some final (minor) corrections include

    Analysis of a Quadratic Programming Decomposition Algorithm

    No full text
    corecore