8 research outputs found

    Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease

    Get PDF
    Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type

    Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients

    Full text link
    The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD

    Generation and integrated analysis of advanced patient-derived orthoxenograft models (PDOX) for the rational assessment of targeted therapies in endometrial cancer

    Full text link
    Clinical management of endometrial cancer (EC) is handicapped by the limited availability of second line treatments and bona fide molecular biomarkers to predict recurrence. These limitations have hampered the treatment of these patients, whose survival rates have not improved over the last four decades. The advent of coordinated studies such as The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA_UCEC) has partially solved this issue, but the lack of proper experimental systems still represents a bottleneck that precludes translational studies from successful clinical testing in EC patients. Within this context, the first study reporting the generation of a collection of endometrioid-EC-patient-derived orthoxenograft (PDOX) mouse models is presented that is believed to overcome these experimental constraints and pave the way toward state-of-the-art precision medicine in EC. The collection of primary tumors and derived PDOXs is characterized through an integrative approach based on transcriptomics, mutational profiles, and morphological analysis; and it is demonstrated that EC tumors engrafted in the mouse uterus retain the main molecular and morphological features from analogous tumor donors. Finally, the molecular properties of these tumors are harnessed to assess the therapeutic potential of trastuzumab, a human epidermal growth factor receptor 2 (HER2) inhibitor with growing interest in EC, using patient-derived organotypic multicellular tumor spheroids and in vivo experiments

    Development of a novel anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions

    Get PDF
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdcscid Il2rdtm1Wjl/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients

    Cell Banking of HEK293T cell line for clinical-grade lentiviral particles manufacturing

    Full text link
    Background: Cell banks are widely used to preserve cell properties as well as to record and control the use of cell lines in biomedical research. The generation of cell banks for the manufacturing of Advanced Therapy Medicinal Products, such as cell and gene therapy products, must comply with current Good Manufacturing Practice regulations. The quality of the cell lines used as starting materials in viral-vector manufacturing processes must be also assessed. Methods: Three batches of a Master Cell Bank and a Working Cell Bank of the HEK293T cell line were manufactured under current Good Manufacturing Practices regulations. Quality control tests were performed according to product specifications. Process validation includes the training of manufacturing personnel by performing simulation tests, and the continuous measurement of environmental parameters such as air particles and microorganisms. Cell number and viability of cryopreserved cells were periodically measured in order to define the stability of these cellular products. Results: All batches of HEK293T Master and Working Cell Banks met the acceptance criteria of their specifications showing the robustness and homogeneity of the processes. In addition, both Master and Working Cell Banks maintained the defined cell viability and concentration over a 37 month-period after cryopreservation. Conclusions: Manufacturing cell banks under Good Manufacturing Practice regulations for their use as raw materials or final cellular products is feasible. HEK293T cell banks were used to manufacture clinical-grade lentiviral particles for Chimeric Antigen Receptor T-cell based clinical trials

    Ikzf1 as a novel regulator of microglial homeostasis in inflammation<span style="background-color:rgb( 255 , 255 , 255 );color:rgb( 0 , 0 , 0 )"> and neurodegeneration</span>

    Full text link
    Using genetic tools, here we describe that Ikzf1 is specifically expressed in the adult microglia in brain regions such as cortex and hippocampus. By characterizing the Ikzf1 deficient mice, we observed that these mice displayed spatial learning deficits, impaired hippocampal CA3-CA1 long-term potentiation, and decreased spine density in pyramidal neurons of the CA1, which correlates with an increased expression of synaptic markers within microglia. Additionally, these Ikzf1 deficient microglia exhibited a severe abnormal morphology in the hippocampus, which is accompanied by astrogliosis, an aberrant composition of the inflammasome, and an altered expression of disease-associated microglia molecules. Interestingly, the lack of Ikzf1 induced changes on histone 3 acetylation and methylation levels in the hippocampus. Since the lack of Ikzf1 in mice appears to induce the internalization of synaptic markers within microglia, and severe gliosis we then analyzed hippocampal Ikzf1 levels in several models of neurological disorders. Ikzf1 levels were increased in the hippocampus of these neurological models, as well as in postmortem hippocampal samples from Alzheimer’s disease patients. Finally, over-expressing Ikzf1 in cultured microglia made these cells hyporeactive upon treatment with lipopolysaccharide, and less phagocytic compared to control microglia. Altogether, these results suggest that altered Ikzf1 levels in the adult hippocampus are sufficient to induce synaptic plasticity and memory deficits via altering microglial state and function

    Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease

    No full text
    Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type

    Development of a novel anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions

    No full text
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdcscid Il2rdtm1Wjl/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients
    corecore