2,414 research outputs found

    Temperature - pressure phase diagram of CeCoSi: Pressure induced high-temperature phase

    Full text link
    We have studied the temperature-pressure phase diagram of CeCoSi by electrical-resistivity experiments under pressure. Our measurements revealed a very unusual phase diagram. While at low pressures no dramatic changes and only a slight shift of the Ne\'{e}l temperature TNT_N (≈10\approx 10 K) are observed, at about 1.45 GPa a sharp and large anomaly, indicative of the opening of a spin-density-wave (SDW) gap, appears at a comparatively high temperature TS≈38T_S \approx 38 K. With further increasing pressure TST_S shifts rapidly to low temperatures and disappears at about 2.15 GPa, likely continuously in a quantum critical point, but without evidence for superconductivity. Even more surprisingly, we observed a clear shift of TST_S to higher temperatures upon applying a magnetic field. We discuss two possible origins for TST_S, either magnetic ordering of Co or a meta-orbital type of transition of Ce.Comment: 6 pages, 5 figure

    The Strehl Ratio in Adaptive Optics Images: Statistics and Estimation

    Full text link
    Statistical properties of the intensity in adaptive optics images are usually modeled with a Rician distribution. We study the central point of the image, where this model is inappropriate for high to very high correction levels. The central point is an important problem because it gives the Strehl ratio distribution. We show that the central point distribution can be modeled using a non-central Gamma distribution.Comment: 8 pages, 5 figure

    Resultados de LEP y perspectivas para el LHC

    Get PDF

    A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions

    Get PDF
    It is expected, and regionally observed, that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources in a single power station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of hybrid energy sources is based on the complementary nature of renewable sources. Considering the growing importance of such systems and increasing number of research activities in this area this paper presents a comprehensive review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spatio-temporal complementarity between renewable energy sources. The review starts with a brief overview of available research papers, formulates detailed definition of major concepts, summarizes current research directions and ends with prospective future research activities. The review provides a chronological and spatial information with regard to the studies on the complementarity concept.Comment: 34 pages 7 figures 3 table

    Huge First-Order Metamagnetic Transition in the Paramagnetic Heavy-Fermion System CeTiGe

    Full text link
    We report on the observation of large, step-like anomalies in the magnetization (ΔM=0.74\Delta M = 0.74\,μB\mu_{\rm B}/Ce), in the magnetostriction (Δl/l0=2.0⋅10−3\Delta l/l_{0} = 2.0 \cdot 10^{-3}), and in the magnetoresistance in polycrystals of the paramagnetic heavy-fermion system CeTiGe at a critical magnetic field μ0Hc≈\mu_0 H_c \approx 12.5\,T at low temperatures. The size of these anomalies is much larger than those reported for the prototypical heavy-fermion metamagnet CeRu2_2Si2_2. Furthermore, hysteresis between increasing and decreasing field data indicate a real thermodynamic, first-order type of phase transition, in contrast to the crossover reported for CeRu2_2Si2_2. Analysis of the resistivity data shows a pronounced decrease of the electronic quasiparticle mass across HcH_c. These results establish CeTiGe as a new metamagnetic Kondo-lattice system, with an exceptionally large, metamagnetic transition of first-order type at a moderate field.Comment: 5 pages, 4 figure
    • …
    corecore