699 research outputs found

    Type Ia Supernova Scenarios and the Hubble Sequence

    Get PDF
    The dependence of the Type Ia supernova (SN Ia) rate on galaxy type is examined for three currently proposed scenarios: merging of a Chandrasekhar--mass CO white dwarf (WD) with a CO WD companion, explosion of a sub--Chandrasekhar mass CO WD induced by accretion of material from a He star companion, and explosion of a sub--Chandrasekhar CO WD in a symbiotic system. The variation of the SNe Ia rate and explosion characteristics with time is derived, and its correlation with parent population age and galaxy redshift is discussed. Among current scenarios, CO + He star systems should be absent from E galaxies. Explosion of CO WDs in symbiotic systems could account for the SNe Ia rate in these galaxies. The same might be true for the CO + CO WD scenario, depending on the value of the common envelope parameter. A testable prediction of the sub--Chandrasekhar WD model is that the average brightness and kinetic energy of the SN Ia events should increase with redshift for a given Hubble type. Also for this scenario, going along the Hubble sequence from E to Sc galaxies SNe Ia events should be brighter on average and should show larger mean velocities of the ejecta. The observational correlations strongly suggest that the characteristics of the SNe Ia explosion are linked to parent population age. The scenario in which WDs with masses below the Chandrasekhar mass explode appears the most promising one to explain the observed variation of the SN Ia rate with galaxy type together with the luminosity--expansion velocity trend.Comment: 16 pages uuencoded compressed Postscript, 2 figures included. ApJ Letters, in pres

    Hunting long-lived gluinos at the Pierre Auger Observatory

    Get PDF
    Eventual signals of split sypersymmetry in cosmic ray physics are analyzed in detail. The study focusses particularly on quasi-stable colorless R-hadrons originating through confinement of long-lived gluinos (with quarks, anti-quarks, and gluons) produced in pp collisions at astrophysical sources. Because of parton density requirements, the gluino has a momentum which is considerable smaller than the energy of the primary proton, and so production of heavy (mass ~ 500 GeV) R-hadrons requires powerful cosmic ray engines able to accelerate particles up to extreme energies, somewhat above 10^{13.6} GeV. Using a realistic Monte Carlo simulation with the AIRES engine, we study the main characteristics of the air showers triggered when one of these exotic hadrons impinges on a stationary nucleon of the Earth atmosphere. We show that R-hadron air showers present clear differences with respect to those initiated by standard particles. We use this shower characteristics to construct observables which may be used to distinguish long-lived gluinos at the Pierre Auger Observatory.Comment: 13 pages revtex, 9 eps figures. A ps version with high resolution figures is available at http://www.hep.physics.neu.edu/staff/doqui/rhadron_highres.p

    Type Ia Supernovae: An Examination of Potential Progenitors and the Redshift Distribution

    Get PDF
    We examine the possibility that supernovae type Ia (SN Ia) are produced by white dwarfs accreting from Roche-lobe filling evolved companions, under the assumption that a strong optically thick stellar wind from accretor is able to stabilize the mass transfer. We show that if a mass transfer phase on a thermal timescale precedes a nuclear burning driven phase, then such systems (of which the supersoft X-ray sources are a subgroup) can account for about 10% of the inferred SN Ia rate. In addition, we examine the cosmic history of the supernova rate, and we show that the ratio of the rate of SN Ia to the rate of supernovae produced by massive stars (supernovae of types II, Ib, Ic) should increase from about z = 1 towards lower redshifts.Comment: 29 pages, Latex, 6 figures, aasms4.sty, psfig.sty, to appear in The Astrophysical Journa

    Galactic Cosmic Rays from Superbubbles and the Abundances of Lithium, Beryllium, and Boron

    Get PDF
    In this article we study the galactic evolution of the LiBeB elements within the framework of a detailed model of the chemical evolution of the Galaxy that includes galactic cosmic ray nucleosynthesis by particles accelerated in superbubbles. The chemical composition of the superbubble consists of varying proportions of ISM and freshly supernova synthesized material. The observational trends of 6 LiBeB evolution are nicely reproduced by models in which GCR come from a mixture of 25% of supernova material with 75% of ISM, except for 6 Li, for which maybe an extra source is required at low metallicities. To account for 7 Li evolution several additional sources have been considered (neutrino-induced nucleosynthesis, nova outbursts, C-stars). The model fulfills the energetic requirements for GCR acceleration.Comment: 25 pages, 9 figures. Accepted for publication in the Astrophysical Journa

    Formation of Millisecond Pulsars from Accretion Induced Collapse and Constraints on Pulsar Gamma Ray Burst Models

    Get PDF
    We study accretion induced collapse of magnetized white dwarfs as an origin of millisecond pulsars. We apply magnetized accretion disk models to the pre-collapse accreting magnetic white dwarfs and calculate the white dwarf spin evolution. If the pulsar magnetic field results solely from the flux-frozen fossil white dwarf field, a typical millisecond pulsar is born with a field strength 10111012G\sim 10^{11}-10^{12}G. The uncertainty in the field strength is mainly due to the uncertain physical parameters of the magnetized accretion disk models. A simple correlation between the pulsar spin Ω\Omega_* and the magnetic field BB_*, (Ω/104s1)(B/1011G)4/5(\Omega_*/10^4s^{-1})\sim (B_{*}/10^{11}G)^{-4/5}, is derived for a typical accretion rate \sim 5\times 10^{-8}M_{\sun}/yr. This correlation remains valid for a wide pre-collapse physical conditions unless the white dwarf spin and the binary orbit are synchronized prior to accretion induced collapse. We critically examine the possibility of spin-orbit synchronization in close binary systems. Using idealized homogeneous ellipsoid models, we compute the electromagnetic and gravitational wave emission from the millisecond pulsars and find that electromagnetic dipole emission remains nearly constant while millisecond pulsars may spin up rather than spin down as a result of gravitational wave emission. We also derive the physical conditions under which electromagnetic emission from millisecond pulsars formed by accretion induced collapse can be a source of cosmological gamma-ray bursts. We find that relativistic beaming of gamma-ray emission and precession of gamma-ray emitting jets are required unless the dipole magnetic field strengths are >1015>10^{15}G; such strong dipole fields are in excess of those allowed from the accretion induced collapse formation process except in spin-orbit synchronization.Comment: 36 pages, AASLATEX, 4 ps figures, Ap

    Coordination of Dynamic Software Components with JavaBIP

    Get PDF
    JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.Comment: Technical report that accompanies the paper accepted at the 14th International Conference on Formal Aspects of Component Softwar

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330
    corecore