18 research outputs found

    Methods and algorithms for unsupervised learning of morphology

    Get PDF
    This is an accepted manuscript of a chapter published by Springer in Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8403 in 2014 available online: https://doi.org/10.1007/978-3-642-54906-9_15 The accepted version of the publication may differ from the final published version.This paper is a survey of methods and algorithms for unsupervised learning of morphology. We provide a description of the methods and algorithms used for morphological segmentation from a computational linguistics point of view. We survey morphological segmentation methods covering methods based on MDL (minimum description length), MLE (maximum likelihood estimation), MAP (maximum a posteriori), parametric and non-parametric Bayesian approaches. A review of the evaluation schemes for unsupervised morphological segmentation is also provided along with a summary of evaluation results on the Morpho Challenge evaluations.Published versio

    Halomonas smyrnensis as a cell factory for co-production of PHB and levan

    No full text
    Levan is a fructan type polysaccharide that has long been considered as an industrially important biopolymer however its limited availability is mainly due to the bottlenecks associated with its large-scale production. To overcome such bottlenecks in the commercialization of this very promising polysaccharide, co-production of levan with polyhydroxyalkanoates (PHAs) by halophilic Halomonas smyrnensis cultures has been proposed in this study for the first time. After in silico and in vitro assessment of PHA accumulation, fermentation profiles for levan and PHA concentrations were obtained in the presence of sucrose and glucose and the PHA granules observed by TEM were found to be poly(3-hydroxybutyrate) (PHB) after detailed structural characterization by GC-MS, DSC, FTIR and NMR. Six nutrient limitation strategies based on nitrogen (N) and phosphorus (P) were tested but highest levan and PHB yields were obtained under unlimited conditions. H. smyrnensis is proved to co-produce PHB and levan while using inexpensive carbon sources which is a commercially successful microbial cell factory system showing a great potential in lowering manufacturing costs and aiming for a zero waste policy within the biorefinery concept. (C) 2018 Elsevier B.V. All rights reserved
    corecore