127 research outputs found

    Biophysical assessment of human aquaporin-7 as a water and glycerol channel in 3T3-L1 adipocytes

    Get PDF
    The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both adipose and stromal vascular fractions. Moreover, AQP7 was the only aquaglyceroporin expressed in adipose tissue and in 3T3-L1 adipocytes. By overexpressing the human AQP7 in 3T3-L1 adipocytes it was possible to ascertain its role as a water and glycerol channel in a gain-of-function scenario. AQP7 expression had no effect in equilibrium cell volume but AQP7 loss of function correlated with higher triglyceride content. Furthermore it is also reported for the first time a negative correlation between water permeability and the cell non-osmotic volume supporting the observation that AQP7 depleted cells are more prone to lipid accumulation. Additionally, the strong positive correlation between the rates of water and glycerol transport highlights the role of AQP7 as both a water and a glycerol channel and reflects its expression levels in cells. In all, our results clearly document a direct involvement of AQP7 in water and glycerol transport, as well as in triglyceride content in adipocytes

    Neuregulin, an effector on mitochondria metabolism that preserves insulin sensitivity

    Get PDF
    Various external factors modulate the metabolic efficiency of mitochondria. This review focuses on the impact of the growth factor neuregulin and its ErbB receptors on mitochondria and their relationship with several physiopathological alterations. Neuregulin is involved in the differentiation of heart, skeletal muscle and the neuronal system, among others, and its deficiency is deleterious for the health. Information gathered over the last two decades suggests that neuregulin plays a key role regulating mitochondrial oxidative machinery, which sustain cell survival and insulin sensitivity

    Human metastatic cholangiocarcinoma patient-derived xenografts and tumoroids for preclinical drug evaluation

    Get PDF
    Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30\\%–50\\% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA.We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA\_PDX). The CCA\_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA\_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA\_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues.This collection of CCA\_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA\_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA\_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD.Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA\_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.The authors would like to thank the patients and their families for their support. This work was supported by grants from the Fundaci o Marat o TV3 awarded to T. Macarulla, M. Mel e, and S. Peir o; BeiGene research grant awarded toT. Macarulla and S. Peir o; AECC (INVES20036TIAN), Ram on y Cajal investigator program (RYC2020-029098-I), Proyecto de IþDþi (PID2019-108008RJ-I00), and FERO Foundation grant awarded to T.V. Tian; Proyecto de Investigaci on en Salud from the Instituto de Salud Carlos III (ISCIII) (PI20/00898) awarded to T. Macarulla; FIS/FEDER from the Instituto de Salud Carlos III (ISCIII) (PI12/01250; CP08/00223; PI16/00253 and CB16/12/00449) awarded to S. Peir o; and Ram on y Cajal investigator program (RYC-2017-22249) awarded to M. Mel e. Q. Serra-Camprubí is a recipient of the Ph.D. fellowship from La Caixa Foundation (LCF/PR/PR12/51070001). A. LlopGuevara was supported by the AECC (INVES20095LLOP) and V. Serra by the ISCIII (CPII19/00033). E.J. Arenas was funded by the AECC (POSTD211413AREN).J. Arribas is funded by the Instituto de Salud Carlos III (AC15/00062, CB16/12/00449, and PI22/00001). This publication is based upon the work of COST Action CA18122, European Cholangiocarcinoma Network, supported by the COST (European Cooperation in Science and Technology, www.cost.eu), a funding agency for research and innovation networks. The authors would like to thank Dr. V.A. Raker for manuscript editing and Drs. N. Herranz and J. Mateo for scientific discussions. The authors acknowledge the infrastructure and support of the FERO Foundation, La Caixa Foundation, and the Cellex Foundation.Peer Reviewed"Article signat per 31 autors/es: Queralt Serra-Camprubí; Helena Verdaguer; Winona Oliveros; Núria Lupión-Garcia; Núria Lupión-Garcia;Alba Llop-Guevara; Cristina Molina; Maria Vila-Casadesús; Anthony Turpin; Cindy Neuzillet; Joan Frigola; Jessica Querol; Mariana Yáñez-Bartolomé; Florian Castet; Carles Fabregat-Franco; Carmen Escudero-Iriarte; Marta Escorihuela; Enrique J. Arenas; Cristina Bernadó-Morales; Noemí Haro; Francis J. Giles; Óscar J. Pozo; Josep M. Miquel ; Paolo G. Nuciforo; Ana Vivancos; Marta Melé; Violeta Serra ; Joaquín Arribas; Josep Tabernero; Sandra Peiró; Teresa Macarulla; Tian V. Tian"Postprint (published version

    Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber

    Get PDF
    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells

    Writing Tourism at University

    Get PDF
    Podeu consultar les versions en català, francès i alemany al recurs relacionat.User guide to written communication in academic disciplines (in this case Tourism) for teachers and students.Aquest projecte ha rebut un ajut Interlingua de la Generalitat de Catalunya

    Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids

    Get PDF
    We have identified a new human cDNA, L-amino acid transporter-2 (LAT-2), that induces a system L transport activity with 4F2hc (the heavy chain of the surface antigen 4F2, also named CD98) in oocytes. Human LAT-2 is the fourth member of the family of amino acid transporters that are subunits of 4F2hc. The amino acid transport activity induced by the co-expression of 4F2hc and LAT-2 was sodium-independent and showed broad specificity for small and large zwitterionic amino acids, as well as bulky analogs (e.g. BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid)). This transport activity was highly trans-stimulated, suggesting an exchanger mechanism of transport. Expression of tagged N-myc-LAT-2 alone in oocytes did not induce amino acid transport, and the protein had an intracellular location. Co-expression of N-myc-LAT-2 and 4F2hc gave amino acid transport induction and expression of N-myc-LAT-2 at the plasma membrane of the oocytes. These data suggest that LAT-2 is an additional member of the family of 4F2 light chain subunits, which associates with 4F2hc to express a system L transport activity with broad specificity for zwitterionic amino acids. Human LAT-2 mRNA is expressed in kidney >>> placenta >> brain, liver > spleen, skeletal muscle, heart, small intestine, and lung. Human LAT-2 gene localizes at chromosome 14q11.2-13 (13 cR or approximately 286 kb from marker D14S1349). The high expression of LAT-2 mRNA in epithelial cells of proximal tubules, the basolateral location of 4F2hc in these cells, and the amino acid transport activity of LAT-2 suggest that this transporter contributes to the renal reabsorption of neutral amino acids in the basolateral domain of epithelial proximal tubule cells

    Learning and memory disabilities in IUGR babies: Functional and molecular analysis in a rat model

    Get PDF
    Introduction: Intrauterine growth restriction (IUGR) is the failure of the fetus to achieve its inherent growth potential, and it has frequently been associated with neurodevelopmental problems in childhood. Neurological disorders are mostly associated with IUGR babies with an abnormally high cephalization index (CI) and a brain sparing effect. However, a similar correlation has never been demonstrated in an animal model. The aim of this study was to determine the correlations between CI, functional deficits in learning and memory and alterations in synaptic proteins in a rat model of IUGR. Methods: Utero-placental insufficiency was induced by meso-ovarian vessel cauterization (CMO) in pregnant rats at embryonic day 17 (E17). Learning performance in an aquatic learning test was evaluated 25 days after birth and during 10 days. Some synaptic proteins were analyzed (PSD95, Synaptophysin) by Western blot and immunohistochemistry. Results: Placental insufficiency in CMO pups was associated with spatial memory deficits, which are correlated with a CI above the normal range. CMO pups presented altered levels of synaptic proteins PSD95 and synaptophysin in the hippocampus. Conclusions: The results of this study suggest that learning disabilities may be associated with altered development of excitatory neurotransmission and synaptic plasticity. Although interspecific differences in fetal response to placental insufficiency should be taken into account, the translation of these data to humans suggest that both IUGR babies and babies with a normal birth weight but with intrauterine Doppler alterations and abnormal CI should be closely followed to detect neurodevelopmental alterations during the postnatal periodEuropean Regional Development Fund BFU2014-55373-RMinisterio de Economía y Competitividad MAT2011-29778-C02-02Generalitat de Catalunya 2014 SGR 117

    Aquaglyceroporins are differenctially expressed in beige and white adipocytes

    Get PDF
    Browning of white adipocytes has been proposed as a powerful strategy to overcome metabolic complications, since brown adipocytes are more catabolic, expending energy as a heat form. However, the biological pathways involved in the browning process are still unclear. Aquaglyceroporins are a sub-class of aquaporin water channels that also permeate glycerol and are involved in body energy homeostasis. In the adipose tissue, aquaporin-7 (AQP7) is the most representative isoform, being crucial for white adipocyte fully differentiation and glycerol metabolism. The altered expression of AQP7 is involved in the onset of obesity and metabolic disorders. Herein, we investigated if aquaglyceroporins are implicated in beige adipocyte differentiation, similar to white cells. Thus, we optimized a protocol of murine 3T3-L1 preadipocytes browning that displayed increased beige and decreased white adipose tissue features at both gene and protein levels and evaluated aquaporin expression patterns along the differentiation process together with cellular lipid content. Our results revealed that AQP7 and aquaporin-9 (AQP9) expression was downregulated throughout beige adipocyte differentiation compared to white differentiation, which may be related to the beige physiological role of heat production from oxidative metabolism, contrasting with the anabolic/catabolic lipid metabolism requiring glycerol gateways occurring in white adipose cells

    Developmental regulation of GLUT-1 (Erytroid/HepG2) and GLUT-4 (Muscle/Fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue

    Get PDF
    The expression of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporters was assessed during development in rat heart, skeletal muscle, and brown adipose tissue. GLUT-4 protein expression was detectable in fetal heart by day 21 of pregnancy; it increased progressively after birth. attaining levels close to those of adults at day 15 post natal.'In contrast, GLUT-4 messenger RNA (mRNA)was already present in hearts from 17 day-old fetuses. GLUT-4 mRNA stayed low during early postnatal life in heart and brown adipose tissue and only increased after day 10 post natal. The expression pattern for GLUT-4 protein in skeletal muscle during development was comparable to that observed in heart. In contrast to heart and skeletal muscle, GLUT-4 protein in brown adipose tissue was detected in high levels (30% of adult) during late fetal life. During fetal life, GLUT-l presented a very high expression level in brown adipose tissue, heart, and skeletal muscle. Soon after birth, GLUT-1 protein diminished progressively, attaining adult levels at day 10 in heart and skeletal muscle. GLUT-1 mRNA levels in heart followed a similar pattern to the GLUT- 1 protein, being very high during fetal life and decreasing early in post natal life. GLUT-1 protein showed a complex pattern in brown adipose tissue: fetal levels were high, decreased after birth, and increased subsequently in post natal life, reaching a peak by day 9. Progesterone-induced postmaturity protected against the decrease in GLUT-1 protein associated with post natal life in skeletal muscle and brown adipose tissue. However, GLUT-4 induction was not blocked by postmaturity in any of the tissues subjected to study. These results indicate that: 1) during fetal and early post natal life, GLUT-1 is a predominant glucose transporter isotype expressed in heart, skeletal muscle, and brown adipose tissue; 2) during early post natal life there is a generalized GLUT-1 repression; 3) during development, there is a close correlation between protein and mRNA levels for GLUT-l, and therefore regulation at a pretranslational level plays a major regulatory role; 4) the onset of GLUT-4 protein induction occurs between days 20-21 of fetal life; based on data obtained in rat heart and brown adipose tissue, there is a dissociation during development between mRNA and protein levels for GLUT-4, suggesting modifications at translational or posttranslational steps; and 5) postmaturity blocks the decrease in GLUT-l expression but not the induction of GLUT-4. observed soon after birth. All these findings suggest that GLUT-1 repression and GLUT-4 induction are mediated by different mechanisms

    Anticoagulant Treatment in Severe ARDS COVID-19 Patients

    Get PDF
    Patients with COVID-19 may complicate their evolution with thromboembolic events. Incidence of thromboembolic complications are high and also, patients with the critically-ill disease showed evidence of microthrombi and microangiopathy in the lung probably due to endothelial damage by directly and indirectly injured endothelial and epithelial cells. Pulmonary embolism, deep venous thrombosis and arterial embolism were reported in patients with COVID-19, and several analytical abnormal coagulation parameters have been described as well. D-dimer, longer coagulation times and lower platelet counts have been associated with poor outcomes. The use of anticoagulation or high doses of prophylactic heparin is controversial. Despite the use of anticoagulation or high prophylactic dose of heparin have been associated with better outcomes in observational studies, only in patients with non-critically ill disease benefits for anticoagulation was observed. In critically-ill patient, anticoagulation was not associated with better outcomes. Other measures such as antiplatelet therapy, fibrinolytic therapy or nebulized anticoagulants are being studied in ongoing clinical trials
    corecore