68 research outputs found

    High resolution preparation of monocyte-derived macrophages (MDM) protein fractions for clinical proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels.</p> <p>Results</p> <p>Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis) indicated no fraction cross contamination. On 2D-PAGE mini gels (7 Ă— 8 cm) we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS).</p> <p>Conclusion</p> <p>This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.</p

    Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry

    Get PDF
    Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states

    Iron deficiency in the elderly population, revisited in the hepcidin era.

    Get PDF
    Iron deficiency (ID) is relatively common among the elderly population, contributing substantially to the high prevalence of anemia observed in the last decades of life, which in turn has important implications both on quality of life and on survival. In elderly subjects, ID is often multifactorial, i.e., due to multiple concurring causes, including inadequate dietary intake or absorption, occult bleeding, medications. Moreover, because of the typical multimorbidity of aged people, other conditions leading to anemia frequently coexist and make diagnosis of ID particularly challenging. Treatment of ID is also problematic in elderly, since response to oral iron is often slow, with a substantial fraction of patients showing refractoriness and requiring cumbersome intravenous administration. In the last decade, the discovery of the iron regulatory hormone hepcidin has revolutionized our understanding of iron pathophysiology. In this review, we revisit ID among elderly people in the light of the impressive recent advances on knowledge of iron regulation, and discuss how hepcidin may help in diagnosis and treatment of this common clinical condition

    Comparative two-dimensional mapping of prion protein isoforms in human cerebrospinal fluid and central nervous system

    No full text
    The cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein abundant in neurons. Although its precise function is unknown, PrP(C) represents the substrate for the generation of a conformational pathogenic isoform (PrP(Sc)) in human and animal transmissible spongiform encephalopathies, or prion diseases. By applying novel solubilization cocktails, we analyzed normal human brain and cerebrospinal fluid (CSF) PrP(C) by immunoblot of two-dimensional (2-D) gel electrophoresis preparations, using specific antibodies. Here, we show that PrP(C) from brain and CSF is composed of several charge isomers of differently glycosylated isoforms of the full-length PrP(C) and two N-terminally truncated fragments of 20 and 18 kDa. In the CSF, substantial amounts of the highly glycosylated PrP(C) isoforms and of the unglycosylated 18 kDa fragment are detected. Our study, for the first time, provides a detailed 2-D map of human PrP(C) both in brain and CSF, and establishes an innovative and sensitive method that might help in detecting the CSF pathological PrP(Sc) isoform in vivo. It also shows the incredible microheterogeneity of such isoforms (ca. 60 spots!), as revealed in 2-D mapping, as opposed to 3-4 main zones by mono-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

    The proteome: anno Domini 2002

    No full text
    We present some current definitions related to functional and structural proteomics and the human proteome, and we review the following aspects of proteome analysis: Classical 2-D map analysis (isoelectric focusing (IEF) followed by SDS-PAGE); Quantitative proteomics (isotope-coded affinity tag (ICAT), fluorescent stains) and their use in e.g., tumor analysis and identification of new target proteins for drug development; Electrophoretic pre-fractionation (how to see the hidden proteome!); Multidimensional separations, such as: (a) coupled size-exclusion and reverse-phase (RP)-HPLC; (b) coupled ion-exchange and RP-HPLC; (c) coupled RP-HPLC and RP-HPLC at 25/60 degrees C; (d) coupled RP-HPLC and capillary electrophoresis (CE); (e) metal affinity chromatography coupled with CE; Protein chips. Some general conclusions are drawn on proteome analysis and we end this review by trying to decode the glass ball of the aruspex and answer the question: "Quo vadis, proteome"

    Hepcidin Inhibition by Modified Heparins without Anticoagulant Activity

    No full text
    Some non-anticoagulant heparins have strong anti-hepcidin activity both in vitro and in vivo, and may represent promising hepcidin antagonist with potential therapeutic application
    • …
    corecore