5 research outputs found

    Mineralogical and geochemical characterization of the Riópar non-sulfide Zn-(Fe-Pb) deposits (Prebetic Zone, SE Spain)

    Get PDF
    The present paper reports the first detailed petrological and geochemical study of non-sulfide Zn-(Fe-Pb) deposits in the Riópar area (Prebetic Zone of the Mesozoic Betic Basin, SE Spain), constraining the origin and evolution of ore-forming fluids. In Riópar both sulfide and non-sulfide Zn-(Fe-Pb) ('calamine') ores are hosted in hydrothermally dolomitized Lower Cretaceous limestones. The hypogene sulfides comprise sphalerite, marcasite and minor galena. Calamine ores consist of Zn-carbonates (smithsonite and scarce hydrozincite), associated with abundant Fe-(hydr)oxides (goethite and hematite) and minor Pb-carbonates (cerussite). Three smithsonite types have been recognized: i) Sm-I consists of brown anhedral microcrystalline aggregates as encrustations replacing sphalerite; ii) Sm-II refers to brownish subhedral aggregates of rugged appearance related with Fe oxi-hydroxides in the surface crystals, which replace extensively sphalerite; and iii) Sm-III smithsonite appears as coarse grayish botryoidal aggregates in microkarstic cavities and porosity. Hydrozincite is scarce and appears as milky white botryoidal encrustations in cavities replacing smithsonite. Also, two types of cerussite have been identified: i) Cer-I cerussite consists of fine crystals replacing galena along cleavage planes and crystal surfaces; and ii) Cer-II conforms fine botryoidal crystals found infill porosity. Calcite and thin gypsum encrustations were also recognized. The field and petrographic observations of the Riópar non-sulfide Zn-(Fe-Pb) revealed two successive stages of supergene ore formation under meteoric fluid processes: i) 'gossan' and 'red calamine' formation in the uppermost parts of the ore with deposition of Fe-(hydr)oxides and Zn- and Pb-carbonates (Sm-I, Sm-II and Cer-I), occurring as direct replacements of Zn-Pb sulfides; and ii) 'gray calamine' ore formation with deposition of Sm-III, Cer-II and hydrozincite infilling microkarst cavities and porosity. The stable isotope variation of Riópar smithsonite is very similar to those obtained in other calamine-ore deposits around the world. Their C-O isotope data (δ18O: +27.8 to +29.6¿ V-SMOW; δ13C: -6.3 to +0.4¿ V-PDB), puts constrains on: i) the oxidizing fluid type, which was of meteoric origin with temperatures of 12 to 19ºC, suggesting a supergene weathering process for the calamine-ore formation under a temperate climate; and ii) the carbon source, that resulted from mixing between two CO2 components derived from: the dissolution of host-dolomite (13C-enriched source) and vegetation decomposition (13C-depleted component)

    Climatology And Hydrology

    No full text

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    International audienceBackground: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society
    corecore