41 research outputs found
Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data
We measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a p-value of p = 4 × 10−3 (2.6σ) using third-order map moments and p = 3 × 10−11 (6.5σ) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through ad-hoc procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables, and deep learning or field level summary statistics of weak lensing maps
The DES view of the Eridanus supervoid and the CMB cold spot
The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard ΛCDM model, only about 10–20 per cent of the observed temperature depression can be accounted for via its Integrated Sachs–Wolfe imprint. However, R ≳ 100 h−1Mpc supervoids elsewhere in the sky have shown ISW imprints AISW ≈ 5.2 ± 1.6 times stronger than expected from ΛCDM (AISW = 1), which warrants further inspection. Using the Year-3 redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant underdensity in the Cold Spot’s direction at z < 0.2. We also show, with S/N ≳ 5 significance, that the Eridanus supervoid appears as the most prominent large-scale underdensity in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about 30 per cent lower than expected from similar peaks found in N-body simulations based on the standard ΛCDM model with parameters Ωm = 0.279 and σ8 = 0.82. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region
Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space
We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-Cℓ method and complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model as in the DES Y3 real-space analysis, we find S8≡σ8Ωm/0.3−−−−−−√=0.793+0.038−0.025, which further improves to S8 = 0.784 ± 0.026 when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of S8, which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, using an increased Fourier mode cut-off up to kmax=5hMpc−1, which allows to constrain baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power spectrum at present time, found to be about 20 per cent lower than predicted by Planck 2018, as reflected by the lower S8 value
The mass and galaxy distribution around SZ-selected clusters
We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev–Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 data set. With signal-to-noise ratio of 62 (45) for galaxy (weak lensing) profiles over scales of about 0.2–20 h−1 Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: (1) The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. (2) The full mass profile is also consistent with the simulations. (3) The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. We measure the dependence of the profile shapes on the galaxy sample, redshift, and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation, cosmology, and astrophysics are discussed
Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty
This work and its companion paper, Amon et al. [Phys. Rev. D 105, 023514 (2022)], present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter
S
8
≡
σ
8
√
Ω
m
/
0.3
at the 3% level in
Λ
CDM
:
S
8
=
0.75
9
+
0.025
−
0.023
(68% CL). Our constraint is at the 2% level when using angular scale cuts that are optimized for the
Λ
CDM
analysis:
S
8
=
0.77
2
+
0.018
−
0.017
(68% CL). With cosmic shear alone, we find no statistically significant constraint on the dark energy equation-of-state parameter at our present statistical power. We carry out our analysis blind, and compare our measurement with constraints from two other contemporary weak lensing experiments: the Kilo-Degree Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the agreement between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES Y3 result under the assumption of
Λ
CDM
is found to be in statistical agreement with Planck 2018, although favors a lower
S
8
than the CMB-inferred value by
2.3
σ
(a
p
-value of 0.02). This paper explores the robustness of these cosmic shear results to modeling of intrinsic alignments, the matter power spectrum and baryonic physics. We additionally explore the statistical preference of our data for intrinsic alignment models of different complexity. The fiducial cosmic shear model is tested using synthetic data, and we report no biases greater than
0.3
σ
in the plane of
S
8
×
Ω
m
caused by uncertainties in the theoretical models
Weak lensing combined with the kinetic Sunyaev Zel'dovich effect: A study of baryonic feedback
Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the S8 constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of S8 and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining S8 = 0.823 +0.019 - 0.020. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations
Internet: um espaço de interação ou mediação na formação de docentes de educação infantil?
Esta pesquisa busca averiguar a profundidade dos processos de apropriação e objetivação do conhecimento historicamente produzido pela humanidade que podem ocorrer no campo da profissionalização de professores de Educação Infantil por intermédio de um ambiente virtual, elaborado e implementado com os pressupostos da Teoria Histórico-Cultural de Vigotsky, principalmente, o conceito de atividade mediadora. Para desenvolver a pesquisa analisamos o link “Comunidade de Educação Infantil” do site do Portal dos Professores da UFSCar, a partir de entrevistas realizadas com docentes desta etapa de ensino. Buscamos responder a seguinte questão de pesquisa: O link Comunidade de Educação Infantil funciona como uma ferramenta de mediação na formação docente? Os resultados indicaram que o link é reconhecido como um instrumento de mediação, pois ele possibilita a apropriação de instrumentos de formação individual como fruto da atividade coletiva humana, contribuindo para a melhoria da formação profissional e, consequentemente, com a melhoria da qualidade do ensino neste nível
Aí tem química! - Teoria cinética dos gases e o comportamento dos gases
Ensino Médio::QuímicaO episódio - Teoria cinética dos gases é parte do programa - Aí tem química! Através de situações baseadas em diferentes aspectos da realidade de estudantes de ensino médio, mesmo daquele que vivem em localidades distantes dos grandes centros urbanos. Ao longo do episódio são apresentados diversos conceitos relacionados aspectos gerais relacionados Teoria Cinética e, ao final,é apresentada uma breve recapitulação do conteúdo abordado ao longo do episódio, o que permite com que os espectadores façam as conexões entre os diversos pontos abordados, encadeando as idéias de forma que haja verdadeiramente uma aprendizagem.O tempo de apresentação do episódio é de 10 minuto