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J. Prat,1 M. A. Troxel,16 N. MacCrann,17 A. R. Liddle,18,19,20 T. Kacprzak,21 X. Fang,5 C. Sánchez,2 S. Pandey,2

S. Dodelson,3 P. Chintalapati,22 K. Hoffmann,23 A. Alarcon,24 O. Alves,25 F. Andrade-Oliveira,25,26 E. J. Baxter,27

K. Bechtol,28 M. R. Becker,24 A. Brandao-Souza,29,30 H. Camacho,25,26 A. Carnero Rosell,31,32,33 M. Carrasco Kind,34,35

R. Cawthon,28 J. P. Cordero,36 M. Crocce,37,38 C. Davis,7 E. Di Valentino,36 A. Drlica-Wagner,39,40,1 K. Eckert,2

T. F. Eifler,5,14 M. Elidaiana,8 F. Elsner,41 J. Elvin-Poole,9,10 S. Everett,42 P. Fosalba,37,38 O. Friedrich,43 M. Gatti,2

G. Giannini,44 R. A. Gruendl,34,35 I. Harrison,45,36 W. G. Hartley,46 K. Herner,40 H. Huang,5 E. M. Huff,14 M. Jarvis,2

N. Jeffrey,47,48 N. Kuropatkin,40 P.-F. Leget,49,50,51 J. Muir,7 J. Mccullough,7,11,12 A. Navarro Alsina,52,26 Y. Omori,39,1,7

Y. Park,53 A. Porredon,9,10 R. Rollins,36 A. Roodman,7,12 R. Rosenfeld,54,26 A. J. Ross,55 E. S. Rykoff,7,12 J. Sanchez,40

I. Sevilla-Noarbe,31 E. S. Sheldon,56 T. Shin,2 I. Tutusaus,38 T. N. Varga,41,57 N. Weaverdyck,8 R. H. Wechsler,11,7,12

B. Yanny,58 B. Yin,3 Y. Zhang,40 J. Zuntz,59 T. M. C. Abbott,60 M. Aguena,30 S. Allam,40 J. Annis,40 D. Bacon,61

E. Bertin,62,63 S. Bhargava,64 S. L. Bridle,36 D. Brooks,47 E. Buckley-Geer,39,40 D. L. Burke,7,12 J. Carretero,65

M. Costanzi,66,67,68 L. N. da Costa,30,69 J. De Vicente,70 H. T. Diehl,40 J. P. Dietrich,71 P. Doel,47 I. Ferrero,72 B. Flaugher,40

J. Frieman,40,1 J. García-Bellido,73 E. Gaztanaga,37,38 D. W. Gerdes,74,8 T. Giannantonio,43,75 J. Gschwend,30,69

G. Gutierrez,40 S. R. Hinton,76 D. L. Hollowood,42 K. Honscheid,9,10 B. Hoyle,71,77 D. J. James,78 T. Jeltema,42

K. Kuehn,79,80 O. Lahav,47 M. Lima,81,30 H. Lin,40 M. A. G. Maia,30,69 J. L. Marshall,82 P. Martini,9,83,84 P. Melchior,85

F. Menanteau,86,34 R. Miquel,87,65 J. J. Mohr,71,77 R. Morgan,28 R. L. C. Ogando,30,69 A. Palmese,40,1 F. Paz-Chinchón,86,43

D. Petravick,86 A. Pieres,30,69 A. A. Plazas Malagón,85 M. Rodriguez-Monroy,70 A. K. Romer,64 E. Sanchez,70

V. Scarpine,40 M. Schubnell,8 D. Scolnic,16 S. Serrano,37,38 M. Smith,88 M. Soares-Santos,8 E. Suchyta,89

M. E. C. Swanson,86 G. Tarle,8 D. Thomas,61 and C. To11,7,12

(DES Collaboration)

1Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
2Department of Physics and Astronomy, University of Pennsylvania,

Philadelphia, Pennsylvania 19104, USA
3McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University,

Pittsburgh, Pennsylvania 15213, USA
4Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

5Department of Astronomy/Steward Observatory, University of Arizona,
933 North Cherry Avenue, Tucson, Arizona 85721-0065, USA

6Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL),
1290 Versoix, Switzerland

7Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University,
Stanford, California 94305, USA

8Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
9Center for Cosmology and Astro-Particle Physics, The Ohio State University,

Columbus, Ohio 43210, USA
10Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

11Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA
12SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

13Berkeley Center for Cosmological Physics, University of California, Berkeley, California 94720, USA
14Jet Propulsion Laboratory, California Institute of Technology,

4800 Oak Grove Dr., Pasadena, California 91109, USA
15Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT, United Kingdom
16Department of Physics, Duke University Durham, North Carolina 27708, USA

17Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

18Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa,
1769-016 Lisboa, Portugal

PHYSICAL REVIEW D 105, 023515 (2022)

2470-0010=2022=105(2)=023515(41) 023515-1 © 2022 American Physical Society



19Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, United Kingdom
20Perimeter Institute for Theoretical Physics,

31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
21Institute for Particle Physics and Astrophysics, ETH Zürich,
Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland

22Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
23Institute for Computational Science, University of Zürich,

Winterthurerstr. 190, 8057 Zürich, Switzerland
24Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA

25Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo 01140-070, Brazil
26Laboratório Interinstitucional de e-Astronomia—LIneA,
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This work and its companion paper, Amon et al. [Phys. Rev. D 105, 023514 (2022)], present cosmic
shear measurements and cosmological constraints from over 100 million source galaxies in the Dark
Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
at the

3% level in ΛCDM: S8 ¼ 0.759þ0.025
−0.023 (68% CL). Our constraint is at the 2% level when using angular scale

cuts that are optimized for the ΛCDM analysis: S8 ¼ 0.772þ0.018
−0.017 (68% CL). With cosmic shear alone, we
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find no statistically significant constraint on the dark energy equation-of-state parameter at our
present statistical power. We carry out our analysis blind, and compare our measurement with constraints
from two other contemporary weak lensing experiments: the Kilo-Degree Survey (KiDS) and
Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the agreement
between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES
Y3 result under the assumption of ΛCDM is found to be in statistical agreement with Planck 2018,
although favors a lower S8 than the CMB-inferred value by 2.3σ (a p-value of 0.02). This paper
explores the robustness of these cosmic shear results to modeling of intrinsic alignments, the matter
power spectrum and baryonic physics. We additionally explore the statistical preference of our data for
intrinsic alignment models of different complexity. The fiducial cosmic shear model is tested using
synthetic data, and we report no biases greater than 0.3σ in the plane of S8 ×Ωm caused by uncertainties in
the theoretical models.

DOI: 10.1103/PhysRevD.105.023515

I. INTRODUCTION

Discoveries and advances in modern cosmology have
resulted in a remarkably simple standard cosmological
model, known as ΛCDM. The model is specified by a
spatially flat universe, governed by the general theory of
relativity, which contains baryonic matter, dark matter, and
a dark energy component that causes the expansion of the
Universe to accelerate. Although remarkably simple, it
appears to be sufficient to describe a great many observa-
tions, including the stability of cold disk galaxies, flat
galaxy rotation curves, observations of strong gravitational
lensing in clusters, the acceleration of the expansion of the
Universe as inferred by type Ia supernovae (SNe Ia), and
the pattern of temperature fluctuations in the cosmic
microwave background (CMB). Yet despite all this,
ΛCDM is fundamentally mysterious in the sense that the
physical nature of its two main components, dark matter
and dark energy, is still completely unknown.
The success of ΛCDM has, however, been shaken in

recent years by new experimental results. We have seen
tentative hints that the model might fail to simultaneously
describe the late- (low redshift) and early-time (high
redshift) Universe. To take one prominent example, con-
straints on the local expansion parameter H0 obtained
from the local distance ladder and SNe Ia appear to be in
tension with those inferred by the CMB [1] at a statistically
significant level [2], with varying levels of significance
being reported by different probes [3,4]. In a separate but
analogous tension, the value of the S8 ≡ σ8ðΩm=0.3Þ1=2
parameter—the amplitude of mass fluctuations σ8 scaled
by the square root of matter density Ωm—differs when
inferred via cosmological lensing [5–7] from the value
obtained using Planck (assuming ΛCDM; [1]) at the
level of 2–3σ. Other probes of the late Universe, in
particular spectroscopic galaxy clustering [8], redshift-
space distortions [3] and the abundance of galaxy clusters
[9,10], also all tend to prefer relatively low values of S8.
Although the evidence is by no means definitive, we are
perhaps beginning to see hints of new physics, and so

stress-testing ΛCDM with new measurements is extremely
important.
Cosmic shear, or cosmological weak lensing (the two-

point correlation function of gravitational shear), is one of
the most informative of the low redshift probes. It has two
main advantages, as a means to infer the properties of the
large scale Universe [11–14]. First, the signal is insensitive
to galaxy bias, which is a significant source of uncertainty
in cosmological analyses based on galaxy clustering and
galaxy-galaxy lensing. Second, weak lensing is sensitive
both to the geometry of the Universe through the lensing
kernel (which is a function of H0 and ratios of angular
diameter distances), and also to the growth of structure and
its evolution in redshift. Since geometry and structure
growth are tightly related to the evolution of dark energy
and its equation-of-state parameterw, this sensitivity carries
over to the cosmic shear signal.
Cosmic shear was first measured over twenty years ago,

roughly simultaneously by a number of groups [15–18].
Although too noisy to constrain cosmological parameters,
these observations represented the first steps toward
fulfilling the potential pointed out by theoretical studies years
earlier [19–21]. The intervening two decades have seen
steady improvements in signal-to-noise and cosmological
constraining power, as new ground- and space-based
lensing datasets have become available [5,6,22–47].
As the volume and quality of lensing data have improved,
so toohave themethodsused to study it,with thedevelopment
of an array of sophisticated statistical and theoretical tools.
There has, for example, been a coherent effort to test and
improve shape measurement algorithms using increasingly
complex image simulations [48–52]. Methods for estimating
the distribution of source galaxies along the line of sight have
also gradually evolved to become highly sophisticated,
incorporating various sources of information [53–58].
Alongside the Dark Energy Survey (DES),1 the

major lensing surveys of the current generation are the

1https://www.darkenergysurvey.org/.
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Kilo-Degree Survey (KiDS; de Jong et al. [59])2 and the
Hyper-Suprime Camera Subaru Strategic Program (HSC;
Aihara et al. [60]).3 We show the approximate, nominal
footprints of these surveys in Fig. 1. Each of these three
collaborations have, in recent years, released cosmic shear
analyses analogous to the one presented in this paper.
Lensing analyses based on HSC data were carried out over
a footprint of 136.9 deg2 split into six fields (red patches in
Fig. 1; [61]); they presented consistent cosmology results
using two types of statistics: real space correlation functions
[28] and harmonic space power spectra [6]. More recently,
the KiDS collaboration released results based on approx-
imately 1000 deg2 of data (blue patches in Fig. 1; [62]), and
presented an analysis of band-power spectra, correlation
functions and the complete orthogonal sets of E-/B-mode
integrals (COSEBIs [5]). They further combined their cosmic
shear results with external spectroscopic data from BOSS
[63] to obtain a 3 × 2pt constraint [64], which is internally
consistent with their cosmic shear results, but differs from
Planck in the full parameter space by ∼2σ.
The trend observed in earlier cosmic shear studies is that

the amplitude of the cosmic shear signal (tied to the
amplitude of matter fluctuations through the S8 parameter)
is lower than that extrapolated from the CMB. In order to
demonstrate whether this discrepancy is physical and
significant, we must have a high degree of confidence in
our modeling of the data and its possible systematic errors.
Among the most significant of these sources of systematic
error are intrinsic alignments (IAs), or astrophysically
sourced correlations of galaxy shapes, which mimic cosmic

shear. Given how difficult it is to disentangle IAs from
lensing, the most common approach is to forward-model
their effect, assuming a model for the IA power spectrum
with a number of free parameters. Depending on the galaxy
sample, however, IA model insufficiency can easily trans-
late into a bias in cosmological parameters [65,66]. In
addition to IAs, effects such as nonlinear growth and the
impact of baryons on the large-scale distribution of dark
matter can alter the matter power spectrum in a significant
way, and so bias the inferred lensing amplitude if neglected
[67–71]. Although it is clear that these effects are scale-
dependent, finding the angular scales where our modeling
is sufficient is by no means straightforward. This paper
describes the choices made in modeling and scale cuts, and
validates that the potential biases on cosmological para-
meters are smaller than the statistical uncertainties.
Our companion paper [72] presents a detailed inves-

tigation of observational errors that can similarly bias
cosmological inference. Undiagnosed biases in the shear
measurement process, for example, can lead one to incor-
rectly infer the lensing amplitude. Likewise, errors in the
estimation of galaxy redshift distributions nðzÞ can subtly
alter the interpretation of the lensing measurement, both in
terms of cosmology and of IAs. Amon et al. [72]
demonstrate that these measurement systematic errors are
well controlled in the Y3 cosmic shear analysis. We note
that the main cosmological constraints presented in both
papers are identical.
The cosmic shear analysis presented in this paper, and in

Amon et al. [72], is part of a series of Year 3 cosmological
results from large-scale structure produced by the Dark
Energy Survey Collaboration. This work relies on many
companion papers that validate the data, catalogs and
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FIG. 1. The approximate footprints of Stage-III dark energy experiments: Dark Energy Survey Year 3 (DES Y3; green), Kilo-Degree
Survey (KiDS-1000; blue), and first-year Hyper Suprime-Cam Subaru Strategic Program (HSC; red). The left and right panels show
orthographic projections of the northern and southern sky respectively. The parallels and meridians show declination and right
ascension. The different survey areas not only affect the final analysis choices, but also reflect the individual science strategies and the
complementarity of Stage-III surveys.

2http://kids.strw.leidenuniv.nl/DR4/index.php.
3https://www.naoj.org/Projects/HSC.
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theoretical methods; those papers, as well as this one, feed
into the main “3 × 2pt” constraints, which combine cosmic
shear with galaxy-galaxy lensing and galaxy clustering in
ΛCDM and wCDM [73], as well as extended cosmological
parameter spaces [74]. These include:

(i) The construction and validation of the Gold catalog
of objects in DES Y3 is described in Sevilla-Noarbe
et al. [75].

(ii) The Point-Spread Function (PSF) modeling algo-
rithm and its validation tests are described in Jarvis
et al. [76].

(iii) A suite of image simulations, used to test the shape
measurement pipeline and ultimately determine the
shear calibration uncertainties is described in Mac-
Crann et al. [77].

(iv) The METACALIBRATION shape catalog, and the tests
that validate its science-readiness, are described in
Gatti et al. [78]. This paper also discusses the (first
layer) catalog-level blinding implemented in Y3.

(v) The characterization of the source redshift distribu-
tion, and the related systematic and statistical un-
certainties, are detailed in five papers. Namely,
Myles et al. [79] and Buchs et al. [55] present
the baseline methodology for estimating wide-field
redshift distributions using Self-Organizing Maps;
Gatti et al. [80] outline an alternative method using
cross correlations with spectroscopic galaxies; Sán-
chez et al. [81] presents a complementary likelihood
using small scale galaxy-galaxy lensing, improving
constraints on redshifts and IA; finally Cordero et al.
[82] validates our fiducial error parametrization
using a more complete alternative based on distri-
bution realizations. In addition to this, Hartley et al.
[83] and Everett et al. [84] respectively describe the
DES deep fields and the Balrog image simulations,
both of which are crucial in testing and implement-
ing the Y3 redshift methodology.

(vi) The data covariance matrix is described in Friedrich
et al. [85]. This paper also presents various
validation tests based on DES Y3 simulations,
and demonstrates its suitability for likelihood
analyses.

(vii) The numerical metrics used to assess tension be-
tween our DES results and external datasets are
described in Lemos et al. [86]. That work considers
a number of alternatives, and sets out the metho-
dology used in this paper and Dark Energy Survey
Collaboration [73].

(viii) The simultaneous blinding of the multiple DES Y3
probes at the two-point correlation function level is
described in Muir et al. [87];

(ix) DeRose et al. [88] presents a set of cosmological
simulations which are used as an end-to-end
validation of our analysis framework on mock
N-body data.

(x) Finally, tests of the theoretical and numerical meth-
ods, as well as modeling assumptions for all 3 × 2pt
analyses are described in Krause et al. [89].

This paper is organized as follows: Sec. II describes the
DES Y3 data, and the catalog construction and calibration.
Section III describes the two-point measurements uponwhich
our results are based, as well as the covariance estimation and
blinding scheme. In Sec. IV, we describe the theoretical
modeling of the cosmic shear two-point data vector. We
demonstrate ourmodel is robust tovarious formsof systematic
error, using simulated data, in Sec. V. Our baseline results and
an exploration of the IAmodel complexity present in our data
are then presented in Sec.VI. In Sec.VIIwe present a series of
reanalyses, using slightly different modeling choices, in order
to verify the robustness of our findings. The consistency of
DES Y3 cosmic shear data with external probes such as other
weak lensing surveys and the CMB is examined in Sec. VIII.
Finally, Sec. IX summarizes our findings and discusses their
significance in the context of the field.

II. DES Y3 DATA AND SAMPLE SELECTION

This section briefly describes the DES Y3 data, and
defines the galaxy samples used in this paper. We also
discuss a number of related topics, including calibrating
selection biases.

A. Data collection and the Gold selection

DES has now completed its six-year campaign, covering
a footprint of around 5000 deg2 to a depth of r ∼ 24.4. The
DES data were collected using the 570 megapixel Dark
Energy Camera (DECam; Flaugher et al. [90]), at the
Blanco telescope at the Cerro Tololo Inter-American
Observatory (CTIO), Chile, using five photometric filters
grizY, which cover a region of the optical and near infrared
spectrum between 0.40 and 1.06 μm. DES SV, Y1 and Y3
cover sequentially larger fractions of the full Y6 footprint,
with Y3, the dataset used in this analysis, encompassing
4143 deg2 after masking, with the “Wide Survey” footprint
covered with 4 overlapping images in each band (compared
with the final survey depth of ∼8). The images undergo a
series of reduction and pre-processing steps, including
background subtraction [91–93], and masking out cosmic
rays, satellite trails and bright stars. Object detection is
performed on the riz coadd images using source extractor
[94]. For the detected galaxies, derived photometric mea-
surements are generated using multiobject fitting (MOF;
[95]) to mitigate blending. The final Y3 selection with
baseline masking is referred to as the Gold catalog, and is
described in detail in Sevilla-Noarbe et al. [75].

B. Shape catalog and image simulations

The DES Y3 shape catalog is created using the
METACALIBRATION algorithm [96,97]. The basic shape
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measurement entails fitting a single elliptical Gaussian
to each detected galaxy. The fit is repeated on arti-
ficially sheared copies of the given galaxy, in order to
construct a shear response matrix Rγ via a numerical
derivative; a selection response RS is also computed in a
similar way. These multiplicative responses are the
essence of METACALIBRATION. After quality cuts, the Y3
METACALIBRATION catalog contains over 100 million gal-
axies, with a mean redshift of z ¼ 0.63 and a weighted
number density4 neff ¼ 5.59 arcmin−2; for discussion of
the cuts and why they are necessary, see Gatti et al. [78].
Although METACALIBRATION greatly reduces the biases

inherent to shear estimation, the process is not perfect. We
must still rely on image simulations for validation and for
deriving priors on the residual biases (predominantly due to
blending, and its impact on the redshift distribution). These
simulations, and the conclusions we draw from them for
Y3, are discussed in MacCrann et al. [77]. In addition to
tests using simulations, the catalogs are subject to a number
of null tests, applied directly to the data. Using both
pseudo-Cls and COSEBIs [100], we find no evidence
for nonzero B-modes in Y3.

C. Photometric redshift calibration

We estimate and calibrate the redshift distributions
of our source sample with a combination of three different
methods. Our base methodology is known as Self-
Organizing Map pðzÞ (SOMPZ; [79]). The most important
aspect of this methodology is that knowledge from
precise redshifts (from spectroscopic samples) and
higher-quality photometric data (from DES deep fields
[83]) informs the bulk of the DES observations (the wide
fields), essentially acting as a Bayesian prior. The con-
nection between the deep and wide field data is determined
empirically using an image simulation framework known
as Balrog [84].
Additionally, clustering redshifts (WZ; [80]) employ

cross-correlations of galaxy densities to improve redshift
constraints, and shear ratios [81] help to constrain redshifts
(and also intrinsic alignment parameters), utilizing
galaxy-shear correlation functions at small scales. While
SOMPZ and WZ are applied upstream to generate and
select nðzÞ estimates, the shear-ratio information, on the
other hand, is incorporated at the point of evaluation of
cosmological likelihoods (see Sec. IV F). Details of each of
these methods in the context of Y3 can be found in
Myles et al. [79], and robustness tests of redshift distri-
butions in the context of cosmic shear are presented in
Amon et al. [72].

III. COSMIC SHEAR MEASUREMENT

In this section we present the measured real-
space cosmic shear two-point correlations [ξ�ðθÞ, see
Eq. (11)], which form the basis of our results and are
shown in Fig. 2. Defining the signal-to-noise of our
measurement as

S=N≡ ξdata� ðθÞTC−1ξmodel
� ðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξmodel
� ðθÞTC−1ξmodel

� ðθÞ
p ; ð1Þ

where C is the data covariance matrix, the S/N of the
cosmic shear detection in DES Y3 after scale cuts is 27. For
the fiducial ΛCDM model, our chi-square at the maximum
posterior is χ2 ¼ 237.7, with 222 effective degrees-of-
freedom (d.o.f.), which gives us a p—value of 0.22 (see
Sec. VI A). We define these quantities in more detail
in Sec. IV.

A. Tomography

We define a set of four broad redshift bins for our source
sample in the nominal range 0 < z < 3, with actual number
densities being fairly small above z≳ 1.5. These are
constructed by iteratively adjusting the redshift bin edges,
such that they each yield approximately the same number
of source galaxies. The Y3 SOMPZ methodology (see
Sec. II C) makes use of Balrog, which artificially inserts
COSMOS galaxies into DES images. The artificial galaxies
are assigned to cells in both the wide- and deep-field self-
organizing maps (SOMs), which allows one to map
between the two, and so assign DES wide-field galaxies
to bins (see [79], Sec. IV C).
The redshift distributions computed in this way, which

feed into our modeling in the next section, are shown in
Fig. 3. The galaxy number densities are 1.476, 1.479,
1.484, and 1.461 per square arcminute respectively in these
four redshift bins.

B. Two-point estimator and measurement

The spin-2 shear field can be expressed in terms of a real
and an imaginary component, γ ¼ γ1 þ iγ2. There are two
possible shear two-point functions that preserve parity
invariance, and a “natural” convention for them is ξþ ≡
hγγ�i and ξ− ≡ hγγi [101], where the angle brackets denote
averaging over galaxy pairs. In terms of tangential (t) and
cross (×) components defined along the line that connects
each pair of galaxies a, b, we have:

ξ� ¼ hγt;aγt;biab � hγ×;aγ×;biab: ð2Þ

In practice we do not have direct access to the shear field,
but rather estimate it via per-galaxy ellipticities (although
see [102] for an alternative approach). Correlating galaxies
in a pair of redshift bins ði; jÞ we define,

4The effective number density here is as defined by Heymans
et al. [98]. The equivalent value using Chang et al. [99]’s
definition is 5.32 arcmin−2 (see [78] for details.)
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ξij�ðθÞ ¼
P

abwawbðêit;aêjt;b � êi×;aê
j
×;bÞP

abwawbRaRb
; ð3Þ

with inverse variance weighting w5 (unlike in Y1, where
such weighting was not included) and response factors R
that account for shear and selection biases (see [78] for
details), and where the sums run over pairs of galaxies a, b,
for which the angular separation falls within the range
jθ − Δθj and jθþ Δθj. Both ξþ and ξ− are measured using
twenty log-spaced θ bins between 2.5 and 250 arcminutes,
with i; j ∈ ð1; 2; 3; 4Þ. As discussed later, not all of the
twenty angular bins are utilized in our likelihood analysis.
We also assume the response matrix is diagonal and that the
selection part is scale independent. The ellipticities that
enter Eq. (3) are corrected for residual mean shear, such that

FIG. 2. Cosmic shear two-point correlationmeasurements fromDESY3.We showhere ξþ and ξ− (black data points, upper left and lower
right halves respectively), with the different panels showing different combinations of redshift bins; in all cases the error bars come from our
fiducial analytic covariance matrix. The lighter grey bands represent scales removed from our fiducial analysis, while the darker are the
equivalent for theΛCDMOptimized analysis. Also shown are the best-fit theory curve inΛCDM (solid green) and the intrinsic alignment
contributions to the signal: GI (dashed yellow), II (dot-dashed red), andGIþ II (solid blue). For clarity, wemultiply the IA contributions by
a factor of 10, and in most bins the total IA signal is ∼1% of GGþ GIþ II. The detection significance of the cosmic shear signal after
fiducial scale cuts is 27. The χ2 per effective d.o.f of the ΛCDM model is 237.7=222 ¼ 1.07 (a p-value of 0.22).

FIG. 3. The estimated redshift distributions and lensing kernels
for the fiducial source galaxy sample used in this work. Most of
the sensitivity of the DES Y3 cosmic shear signal to large scale
structure is in the range between z ¼ 0.1 and z ¼ 0.5, where
individual kernels peak. Each distribution is independently
normalized over the redshift range z ¼ 0–3. The total effective
number density [98] of sources is neff ¼ 5.59 galaxies per square
arcminute and is divided almost equally into the 4 redshift bins.

5Although referred to as such, the catalog weights only
approximate inverse variance weighting. See Gatti et al. [78],
Sec. IV C for details.
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êik ≡ eik − hekii for components k ∈ ð1; 2Þ and redshift bin
i, again following the Y1 methodology [7]. We show the
resulting two-point functions, which are measured using
using TreeCorr

6 [103], in Fig. 2, alongside best fitting theory
predictions.

C. Data covariance matrix

We model the statistical uncertainties in our combined
measurements of ξ� as a multivariate Gaussian distribution.
The disconnected 4-point function part of the covariance
matrix of that data vector (the Gaussian covariance part) is
described in [85] and includes analytic treatment of bin
averaging and sky curvature. We also verify in that paper
that expected fluctuations in Δχ2 between the measurement
and our maximum posterior model do not significantly
impact on our estimates of cosmological parameters. Our
modeling of the connected 4-point function part of the
covariance matrix and the contribution from super-sample
covariance uses the public CosmoCov

7 [104] code, which is
based on the CosmoLike framework [105].
We use the RMS per-component shape dispersion σe and

effective number densities neff specified in Table 1 of [72]
to calculate the shape-noise contribution to the covariance,
and additionally account for survey geometry effects. We
follow previous cosmic shear analyses in using a covari-
ance matrix that assumes a baseline cosmology (see [6] for
a different approach). That is, we assume a fiducial set of
input parameters for the initial covariance matrix and run
cosmological chains using this first guess. The covariance
is then recomputed at the best fit from this first iteration,
and the final chains are run. We find this update to have
negligible effects on the cosmic shear constraints presented
in this paper.

D. Blinding

We implement a three-stage blinding strategy, perform-
ing transformations to the catalog, data vector, and param-
eters in order to obscure the cosmological results of the
analysis. By disconnecting the people carrying out the
analysis from the impact their various choices are having
on the eventual cosmological results, the aim is to avoid
unconscious biases, either toward or away from previous
results in the literature. Although the approaches differ
somewhat, all of the major cosmic shear collaborations
have adopted a similar philosophy regarding the necessity
of blinding [5–7,106,107].
The first level of blinding follows a similar method to

that used in Y1 [108], and is discussed in Gatti et al. [78]
(their Sec. II C). In short, the process involves a trans-
formation of the shear catalog, where galaxy shapes are
scaled by a random multiplicative factor. The second level

is a transformation of the data vector using the method
described in Muir et al. [87]. We compute model predic-
tions at two sets of input parameters: an arbitrary reference
cosmologyΘref and a shifted cosmologyΘref þ ΔΘ, where
ΔΘ is drawn randomly in wCDM parameter space. The
difference between these model predictions is then applied
to the measured ξ� data vector prior to its analysis.
The final stage of blinding is at the parameter level, and
entails obscuring the axes of contour plots (effectively
equivalent to shifting contours randomly in parameter
space, preserving constraining power but making external
consistency testing impossible). A detailed checklist of the
tests that must be fulfilled before each stage of blinding
can be removed can be found in Dark Energy Survey
Collaboration [73].
From a modeling perspective, passing the tests we

describe in Sec. V and the further tests on synthetic data
described in DeRose et al. [88] and Krause et al. [89]
fulfills our unblinding requirements. A set of internal
consistency tests for cosmic shear must also be passed
and are described in Amon et al. [72].

IV. FIDUCIAL MODEL AND
ANALYSIS CHOICES

A predictive physical model for cosmic shear has a
number of requirements; first, any systematic deviations
or effects omitted from the model must be comfortably
subdominant to uncertainties on the data; and second,
the implementation must be numerically stable at all
points within the prior volume. We also aim for redun-
dancy, and implement the full pipeline in two independent
codes: CosmoSIS

8 [109] and CosmoLike [105], which
are verified to be in agreement to within a negligible
Δχ2 [89].
In this section, we outline our baseline model for ξij�ðθÞ

and discuss how it meets the above criteria. We sub-
sequently show the cosmological constraints from these
analysis choices in Sec. VI. To test the robustness of this
baseline model, we later relax its main approximations and
assumptions and show variations of analysis choices in
Sec. VII.

A. Sampling and parameter inference

For all parameter inference presented in this paper, we
assume the likelihood of the data given the model M with
parameters p to be a multivariate Gaussian:

lnLðD̂jp;MÞ ¼ −
1

2
χ2 þ const:; ð4Þ

χ2 ¼ ðD̂ − TMðpÞÞTC−1ðD̂ − TMðpÞÞ; ð5Þ
6https://github.com/rmjarvis/TreeCorr.
7https://github.com/CosmoLike/CosmoCov. 8https://bitbucket.org/joezuntz/cosmosis.
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where C is the data covariance matrix and TMðpÞ is the
theory prediction vector for a data vector D̂, a concatenated
version of all elements of the tomographic cosmic shear
data (with length ND ¼ NθNzðNz þ 1Þ, where Nθ is the
number of angular bins included in each correlation
function after scale cuts (Nθ varies depending on the
redshift bins, and equals 20 before cuts) and Nz ¼ 4 is
the number of broad redshift bins). Since we are incorpo-
rating shear ratios at the inference level (see Sec. IV F), the
final likelihood used in our analyses is the sum of two parts,
lnL ¼ lnL2pt þ lnLSR, which are assumed to be indepen-
dent [81].
As we aim to perform a Bayesian analysis, the a poste-

riori knowledge of the parameters given the observed data,
denoted by PðpjD̂;MÞ, depends not only on the likelihood
but also on prior ΠðpjMÞ. These pieces are related via
Bayes’ theorem:

PðpjD̂;MÞ ¼ LðD̂jp;MÞΠðpjMÞ
PðD̂jMÞ ; ð6Þ

where PðD̂jMÞ is the so-called evidence of the data.
Sampling of the posterior is carried out using Polychord
([110]; with 500 live points and tolerance 0.01). These
settings have been tested to demonstrate the accuracy of the
posteriors and Bayesian evidence estimates. Although
sampling gives a rather noisy estimate of the best-fit point
in the full parameter space, the Maximum a Posteriori
(MAP) quoted in Sec. VI A, we verify that standard
Polychord outputs, in practice, offer a reasonable estimate
of that point when compared to a MAP optimizer.9

Throughout this paper, we report parameter constraints
using the MAP value and 1D marginalized summary
statistics in the form:

Parameter ¼ 1D meanþupper 34% bound
−lower 34% bound ðMAP valueÞ:

The ratio of evidences is a well-defined quantity for
model-testing within a single dataset to indicate a prefer-
ence for one modeling choice (M1, with parameters p1)
over another (M2, p2):

RM1=M2
¼ PðD̂jM1Þ

PðD̂jM2Þ
¼

R
dpLðD̂jp1;M1ÞPðp1jM1ÞR
dpLðD̂jp2;M2ÞPðp2jM2Þ

: ð7Þ

The evidence ratio has the advantage of naturally pena-
lizing models of excessive parameter space volume, but
needs to be interpreted using e.g. the Jeffreys scale [111],
which somewhat arbitrarily differentiates between “strong”
and “weak” model preferences. Our main use of evidence

ratios is to help assessing model preference in the context of
IA complexity in Sec. VI C 2.

B. Modeling cosmic shear

The two-point cosmic shear correlations ξij�ðθÞ are
related to the nonlinear matter power spectrum (and thus
to the growth and evolution of structure). The key quantity
that dictates how much a galaxy on a particular line of sight
is distorted, is known as the convergence κ. That is, the
weighted mass overdensity δ, integrated along the line-of-
sight to the distance of the source χs:

κðθÞ ¼
Z

χs

0

dχWðχÞδðθ; χÞ: ð8Þ

The weight for a particular lens plane, quantified below
in Eq. (10), is sensitive to the relative distances of the
source and the lens; it is via this geometrical term that
cosmic shear probes the expansion history of the Universe.
Fitting all the auto- and cross-redshift bin correlations
simultaneously significantly improves the cosmological
constraining power [19], both because it helps to untangle
the signal at different epochs, and because it (partially)
breaks the degeneracy with intrinsic alignments (see also
Sec. IV D).
Under the Limber approximation [112,113], the 2D

convergence power spectrum in tomographic bins i and
j, Cij

κ ðlÞ is related to the full 3D matter power spectrum as:

Cij
κ ðlÞ¼

Z
χðzmaxÞ

0

dχ
WiðχÞWjðχÞ

χ2
Pδ

�
lþ1=2

χ
;zðχÞ

�
; ð9Þ

where Pδ is the nonlinear matter power spectrum and the
lensing efficiency kernels are given by

WiðχÞ ¼ 3H2
0Ωm

2c2
χ

aðχÞ
Z

χH

χ
dχ0niðzðχ0ÞÞ dz

dχ0
χ0 − χ

χ0
: ð10Þ

The source galaxy redshift distribution niðzÞ here is
normalized to unity. Clearly, the amplitude of Cκ responds
directly to σ28, and to Ωm via the power spectrum, and to
Ωmh2 via the lensing kernel, which gives rise to a
characteristic banana-shaped degeneracy in σ8 ×Ωm. The
combination of parameters most strongly constrained by
cosmic shear is a derived parameter, commonly referred to
as S8 ≡ σ8ðΩm=0.3Þ0.5.
By decomposing κ into E- and B-mode components

[114,115] and in a full-sky formalism, one can express the
angular two point shear correlations as:

9We run the MaxLike sampler in Posterior mode for this test
(https://bitbucket.org/joezuntz/cosmosis/wiki/samplers/maxlike).
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ξij�ðθÞ ¼
X
l

2lþ 1

2πl2ðlþ 1Þ2
�
Gþ

l;2ðcos θÞ � G−
l;2ðcos θÞ

�

×

�
Cij
EEðlÞ � Cij

BBðlÞ
�
; ð11Þ

where the functions G�
l ðxÞ are computed from Legendre

polynomials PlðxÞ and averaged over angular bins [see
Krause et al. [89], Eqs. (19) and (20)]. It is also worth
bearing in mind that, in practice, the angular spectra in
Eq. (11) are not in fact pure cosmological convergence
spectra Cκ, but rather shear spectra Cγ , which include
contributions from intrinsic alignments (see Sec. IV D), and
additional higher order terms are explored later.
Since the lensing kernel in Eq. (10) acts as a redshift

filter, which modulates sensitivity to Pδ in Eq. (9), it is
informative to show its redshift dependence; we do so in the
lower panel of Fig. 3, for the fiducial Y3 redshift distri-
butions. As shown there, the DES Y3 cosmic shear signal is
sensitive to a relatively broad range, with kernels peaking
between approximately z ¼ 0.1 and z ¼ 0.5.
Similarly, the polynomials in Eq. (11) mix together a

range of physical distances into any given angular scale.
We can elucidate this by writing ξij� as an integral over ln k
(e.g. [116]) to obtain:

ξij�ðθÞ ¼
Z þ∞

−∞
d ln kPðkÞ ð12Þ

where

PðkÞ ¼ k
2π

X
l

½Gþ
l;2ðcos θÞ �G−

l;2ðcos θÞ�

×WiðχÞWjðχÞPδðk; zðχÞÞ; ð13Þ

with χ¼ðlþ1=2Þ=k. We show dlnξ�ðθÞlnk¼PðkÞ=ξ�ðθÞ
for representative θ scales in Fig. 4. This shows the
sensitivity of our cosmic shear signal at a given angular
scale to modes of the matter power spectrum. Our scale
cuts, defined in Sec. IVG, eventually remove most of the
sensitivity to k > 1 hMpc−1.
The remainder of this section motivates the ingredients

introduced in Eqs. (9)–(11) such as the nonlinear power
spectrum prescription and the set of scales for which the
signal is not significantly contaminated by unmodeled
physics.

C. Nonlinear power spectrum

On the largest of physical scales, growth is linear and
well described by a purely linear matter power spectrum
Plin
δ ðkÞ. To evaluate Plin

δ we use the Boltzmann code
CAMB

10 [117], as implemented in CosmoSIS. On smaller

scales, however, this is not true, and one also needs a
model for nonlinear growth. Our fiducial model for the
nonlinear matter power spectrum PδðkÞ is the HaloFit

functional prescription [118,119]. We have made scale
cuts to remove the parts of the data vector affected by
baryonic effects, as described in Sec. IV G; this largely
removes the sensitivity to wavenumbers k > 1 hMpc−1.
For k < 1 hMpc−1, Takahashi et al. [119] reports an
uncertainty on the HaloFit model of 5%. In Krause et al.
[89] we demonstrate, by substituting HaloFit for HMcode

11

[120], the Euclid Emulator [121], or the Mira-Titan Emulator

[122] that for cosmic shear alone we are insensitive to this
choice. In the context of the Y3 3 × 2pt analysis, the
distinction between these three models is more nuanced,
and we refer the reader to Krause et al. [89] for a full
justification of the use of HaloFit.

FIG. 4. Window functions of ξþ (solid curves) and ξ− (dashed
curves) over k-wave numbers of the matter power spectrum at
representative angular separations. Notice that our smallest
angular scales (after cuts) in ξþ and ξ− are around 2.5 arcminutes
and 30 arcminutes respectively, which means that only a
relatively small contribution to the full signal comes from wave
numbers above k ∼ 1 h=Mpc.

10http://camb.info. 11https://github.com/alexander-mead/HMcode.
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D. Intrinsic alignments

Galaxies are not idealized tracers of the underlying
matter field, but rather astrophysical bodies, which are
subject to local interactions. To account for this added
complexity, the observed shape of a galaxy can be
decomposed into two parts, the shear induced by gravita-
tional lensing (G) and the intrinsic shape (I) induced by the
local environment: γ ¼ γG þ γI. In this section, we consider
only the correlated intrinsic component, and not the
intrinsic “shape noise,” which contributes to the covariance
but not the signal.
The term intrinsic alignments covers two contributions

from environmental interactions: (a) intrinsic shape—
intrinsic shape correlations between galaxies that are
physically close to each other, and (b) shear-intrinsic
correlations between galaxies on neighboring lines of sight.
Known as II and GI contributions respectively, and con-
tributing on similar angular scales to the cosmological
lensing signal, these terms constitute a significant system-
atic in weak lensing analyses. Including IA contributions,
the observed E-mode angular power spectrum is written

Cij
γ;EEðlÞ ¼ Cij

GGðlÞ þCij
GIðlÞ þCij

IGðlÞ þCij
II;EEðlÞ: ð14Þ

Nonlinear models of IA, as discussed below, can also
produce a nonzero B-mode power spectrum:

Cij
γ;BBðlÞ ¼ Cij

II;BBðlÞ: ð15Þ
Assuming the Limber approximation as before, the two

IA CðlÞs are given by:

Cij
GIðlÞ¼

Z
χH

0

dχ
WiðχÞnjðχÞ

χ2
PGI

�
lþ1=2

χ
;zðχÞ

�
; ð16Þ

and

Cij
IIðlÞ ¼

Z
χH

0

dχ
niðχÞnjðχÞ

χ2
PII

�
lþ 1=2

χ
; zðχÞ

�
; ð17Þ

These expressions are generic, and are valid regardless of
which model is used to predict PGI and PII (see the
following subsections).

1. IA and the tidal field

It is typically assumed that the correlated component of
galaxy shapes is determined by the large-scale cosmologi-
cal tidal field. The simplest relationship, which should
dominate on large scales and for central galaxies, involves
the “tidal alignment” of galaxy shapes, producing a linear
dependence [123,124]. In this case, one can relate the
intrinsic shape component to the gravitational potential at
the assumed time of galaxy formation ϕ�:

ðγI1; γI2Þ ¼ A1ðzÞ
� ∂2

∂x2 −
∂2

∂y2 ; 2
∂2

∂x∂y
�
ϕ�; ð18Þ

where the proportionality factor A1ðzÞ captures the
response of intrinsic shape to the tidal field. More complex
alignment processes, including “tidal torquing,” relevant
for determining the angular momentum of spiral galaxies,
are captured in a nonlinear perturbative framework, which
we refer to as “TATT” (tidal alignment and tidal torquing;
[65]). In this more general model, we use nonlinear
cosmological perturbation theory to express the intrinsic
galaxy shape field, measured at the location of source
galaxies [125], as an expansion in the matter density field δ
and tidal field sij:

γ̄IAij ¼ A1sij þ A1δδsij þ A2

X
k

sikskj þ � � � ; ð19Þ

where sij is the gravitational tidal field, which at any given
position x is a 3 × 3 tensor (see [126] for a formal
definition).
Although the terms in the model can be associated with

physical mechanisms, they can also be viewed as effective
contributions to intrinsic shape correlations from small-
scale physics. See also Schmitz et al. [127], Tugendhat and
Schäfer [128], Vlah et al. [129] for further discussion of the
perturbative approach and Fortuna et al. [130] for a halo
model treatment of IA.

2. Model implementation: NLA and TATT

Within the TATT framework, three parameters capture
the relevant responses to the large-scale tidal fields (see
[65] for more details): A1, A2, and A1δ, corresponding
respectively to a linear response to the tidal field (tidal
alignment), a quadratic response (tidal torquing), and a
response to the product of the density and tidal fields. To
date, the most frequently used intrinsic alignment model in
the literature is known as the nonlinear alignment model
(NLA; [131,132]), an empirically-based modification of
the linear alignment (LA) model of Catelan et al. [123] and
Hirata and Seljak [124], in which the fully nonlinear tidal
field is used to calculate the tidal alignment term. Within
the TATT framework, the NLA model corresponds to only
A1 being nonzero in Eq. (19). The GI and II power spectra
then have the same shape as the nonlinear matter power
spectrum, but are modulated by A1ðzÞ:

PGIðk; zÞ ¼ A1ðzÞPδðk; zÞ;
PIIðk; zÞ ¼ A2

1ðzÞPδðk; zÞ: ð20Þ

Note that the nonlinear power spectrum and the IA
amplitudes are functions of redshift. In the following,
the z dependence of the IA amplitudes and various k
dependent terms is left implicit. More generally, in the
TATT model, the GI and II power spectra are constructed
with the relevant correlations of tidal and density
fields:
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PGIðkÞ ¼ A1PδðkÞ þ A1δP0j0EðkÞ þ A2P0jE2ðkÞ; ð21Þ

PII;EEðkÞ ¼ A2
1PδðkÞ þ 2A1A1δP0j0EðkÞ þ A2

1δP0Ej0EðkÞ
þ A2

2PE2jE2ðkÞ þ 2A1A2P0jE2ðkÞ
þ 2A1δA2P0EjE2ðkÞ; ð22Þ

PII;BBðkÞ ¼ A2
1δP0Bj0BðkÞ þ A2

2PB2jB2ðkÞ
þ 2A1δA2P0BjB2ðkÞ: ð23Þ

In this work, these k-dependent terms are evaluated using
FAST-PT [133,134], as implemented in CosmoSIS. The model,
including the full expressions for these power spectra is set
out in some depth in Blazek et al. [65] [see their Eqs. (37)–
(39) and appendix A], and we refer the reader to that paper
for technical details. The k-dependent contributions are
modulated by the redshift-dependent amplitudes A1, A2,
and A1δ. We define the first two with the following
convention:

A1ðzÞ ¼ −a1C̄1

ρcritΩm

DðzÞ
�
1þ z
1þ z0

�
η1
; ð24Þ

A2ðzÞ ¼ 5a2C̄1

ρcritΩm

D2ðzÞ
�
1þ z
1þ z0

�
η2
; ð25Þ

where DðzÞ is the linear growth factor, ρcrit is the critical
density, and C̄1 is a normalization constant, by convention
fixed at C̄1 ¼ 5 × 10−14 M⊙ h−2Mpc2, obtained from
SuperCOSMOS (see [135]). The leading factor of 5 in
Eq. (25) is included to account for the difference in the
windowed variance produced by the TA and TT power
spectra. With this factor included, the TA and TT con-
tributions to PII at z ¼ 0, averaged over this window,
should be roughly equal if a1 ¼ a2, aiding in the inter-
pretation of the best fitting values. Note that this is a matter
of convention only, and does not affect our final cosmo-
logical results. The denominator z0 is a pivot redshift,
which we fix to the value 0.62.12 The dimensionless
amplitudes ða1; a2Þ and power law indices ðη1; η2Þ are free
parameters in this model.
As mentioned above, the model also includes the A1δ

contribution, corresponding to the product of the density
and tidal fields. This term was originally motivated by the
modulation of the IA signal due to the galaxy density
weighting (i.e. the fact that the shape field is preferentially
sampled in overdense regions [125]). In this case, within
the TATT model, we have

A1δ ¼ bTAA1; ð26Þ

where bTA is the linear bias of source galaxies contributing
to the tidal alignment signal. In our baseline analysis, rather
than fixing bTA to this bias value, we sample over it with a
wide prior, allowing the A1δ contribution to capture a
broader range of nonlinear alignment contributions.
We note that this is a departure from previous studies to
have used this model [7,65,136], all of which held bTA ¼ 1
fixed. The motivation for this change is set out in Sec. V. As
can be seen from Eq. (21)–(23), in the limit a2; bTA → 0,
the TATTmodel reduces to the NLAmodel. It is thus useful
to think of NLA as a subspace of the more complete TATT
model, rather than a distinct, alternative model. Given the
sensitivity of IAs to the details of the galaxy selection, and
in the absence of informative priors, we choose to mar-
ginalize over all five IA parameters ða1; a2; η1; η2; bTAÞ,
governing the amplitude and redshift dependence of the IA
terms, with wide flat priors (see Sec. IV H). While a
redshift evolution in the form of a power law, captured
by the index ηi, is a common assumption, the AiðzÞ
coefficients could, in theory, have a more complicated
redshift dependence. We seek to test the impact of this
assumption by rerunning our analysis with a more flexible
parametrization, whereby the IA amplitude A1;i in each
redshift bin is allowed to vary independently. The results of
this exercise can be found in Sec. VII B.
It is finally worth remarking that the TATT model

predicts a nonzero B-mode power spectrum PII;BB. This
extra signal component is incorporated into our modeling,
and propagated into ξ� via Eq. (11). PII;BB is expected to be
small since the testing carried out in [78] points to no
statistically significant detection of B-modes in the DES Y3
shape catalog.
A visual representation of the II and GI signals, as

predicted at the best-fitting point in parameter space from
our fiducial analysis, can be found in Fig. 2.

E. Modeling nuisance parameters: Shear bias and
photo-z error

In addition to the parameters associated with the cos-
mological and IA models, there are a number of additional
parameters included in our fiducial analysis, which are
intended to absorb known sources of uncertainty. First of
all, we follow the majority of previous cosmic shear
analyses, and parametrize errors in the redshift distributions
as uniform shifts in their mean, which transform the
assumed distribution in a given bin i as:

niðzÞ → niðz − ΔziÞ: ð27Þ

This leaves us with four nuisance parameters ðΔz1−4Þ,
which are marginalized with informative priors (see
Sec. IV H). This simple marginalization scheme was
validated with a more complete method, known as
HyperRank Cordero et al. [82], which uses a large ensemble
of possible redshift distributions (typically of order 1000)

12The value was chosen in DES Y1 to be approximately equal
to the mean source redshift. We choose to maintain that value to
allow for an easier comparison of the IA amplitudes with those
results.
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generated using the SOMPZ pipeline [79]. The basic aim of
this method is to capture the range of plausible variations in
the full shape of the distributions (not only their mean), and
also the correlations between bins. Although in our
particular setup the simpler parametrization was found to
be sufficient, the tests in Cordero et al. [82] and Amon et al.
[72] show the crucial validation of that choice.
Another important source of uncertainty is the shape

calibration process, and particularly its response to blend-
ing MacCrann et al. [77]. The common way of describing
such effects [49,137] is a simple rescaling of the two-point
function model prediction

ξij� → ð1þmiÞðiþmjÞ × ξij�; ð28Þ

where again the indices i, j indicate redshift bins, and m is
assumed to be redshift and scale independent within each
bin. This is our fiducial parametrization. As explained in
Sec. II C, this approach is an approximation to the more
complete methodology set out in MacCrann et al. [77] (see
in particular their Sec. 6.5), which incorporates the redshift-
dependent impact of blending on the source redshift
distributions. Nevertheless, an extensive series of tests
indicate that Eq. (28) is sufficient for the statistical power
of DES Y3 (see [72,77]).

F. Incorporating shear ratios

In the DES Y3 analysis, we also incorporate small-scale
shear ratios (SR) at the likelihood evaluation level. This
likelihood is included in all our present constraints unless
explicitly noted otherwise. This concept and its DES appli-
cation is outlined in more detail by Sánchez et al. [81].
Essentially, SR is an additional lensing-based data vector
with 9 data points made up of measured galaxy-galaxy
lensing ratios. It is nearly independent of cosmology and
galaxy bias, but responds to (and thus constrains) redshift
distributions and intrinsic alignments. Note that this particu-
lar analysis feature is different from Y1 and most current
cosmic shear results, a detail that should be kept in mind in
any comparison of our findings with previous results.
We use SR on small scales that are not used in the 3 × 2pt

likelihood (< 6 Mpc=h), where uncertainties are dominated
by galaxy shape noise, such that the likelihood can be treated
as independent of that from the ξ� (and indeed the full
3 × 2pt) data. On these scales the SR measurement is only
very weakly dependent on the matter power spectrum, and
so immune to uncertainties in modeling Pδ on small scales
[81]. In this work, we only employ SR as obtained from the
fiducial MagLim lens sample Porredon et al. [138], and
marginalize over its required nuisance parameters. These
are a free (linear) galaxy bias coefficient per lens bin (which
are unconstrained by cosmic shear and have no impact on the
final posteriors), as well as lens redshift parameters (three
shiftΔzl and threewidth parameters δz; see [139]), onwhich
we have relatively tight priors. Themain impact of including

SR is an improvement in constraints on IAs and redshift
nuisance parameters. Through internal degeneracies, this
translates into significantly improved constraints on S8, of
around 30% in our fiducial analysis setting. Further dis-
cussion can be found in Sánchez et al. [81] (Sec. 6 and
Fig. 10) and Amon et al. [72] (Sec. X and Fig. 11). In
particular, those papers also assess the impact of utilizing
redMaGiC, an alternative DES Y3 lens sample [140–142], in
order to obtain the shear ratios.

G. Angular scale cuts

1. Baryons

The impact of baryons on the matter power spectrum on
cosmological scales is a source of considerable uncertainty
[143–145]. While feedback processes from active galactic
nuclei (AGN) and supernovae heat up the halo environment
and tend to suppress matter clustering, metal enrichment
can offer cooling channels that in fact increase power on
small scales. These effects also depend on redshift and
galaxy evolution [146].
As a fiducial strategy for mitigating the uncertainties

coming from baryonic physics, we employ a gravity-only
matter power spectrum (CAMB+HaloFit) as described in
Sec. IV C, and remove angular scales from the data vector
which are significantly affected by feedback processes. We
have additionally verified with synthetic data that margin-
alizing over baryonic halo model parameters with
conservative priors does not lead to an actual gain in the
S8 × Ωm subspace. Specifically, we use HMcode [120] and
free both the halo concentration amplitude A with a flat
prior [1.0, 7.5] and the bloating parameter η0 with a flat
prior [0.4, 1.0]. These priors were chosen such that all
baryonic scenarios tested in Mead et al. [120] would be
encapsulated by the allowed halo model modification. We
find, with these fairly conservative priors, that attempting to
model progressively smaller scales in synthetic data vectors
results in tighter constraints on the baryon nuisance
parameters A and η0, while leaving the constraining power
on S8 ×Ωm approximately unchanged.

2. Determining scale cuts

We define scale cuts based on the Δχ2 between noiseless
synthetic cosmic shear data vectors, generated with and
without a baryonic “contamination,” according to Eq. (5).
For the baryonic data vector, we use the OWLS [147,148]
matter power spectrum. The AGN-feedback implementa-
tion in this suite of simulations represents one of the most
extreme scenarios in the literature, and thus characterizes
the most conservative case for the baryonic contamination
we expect our analysis to be safe against.
To determine scale cuts for the cosmic shear two-point

functions ξij�, we evenly distribute theΔχ2 threshold among
tomographic bins, and limit each of the shear two-point
angular functions:
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ðξij�;baryon − ξij�;baseÞtC−1
subðξij�;baryon − ξij�;baseÞ <

Δχ2threshold
N

;

ð29Þ

where N ¼ 20 is the number of cross-correlations between
four tomographic redshift bins in the two shear correlations
ξ�. The C−1

sub submatrix of the inverse covariance matrix
corresponds to the specific tomographic bin. For each
element of ξij�, we find the minimum angular separation that
satisfies Eq. (29) and exclude data points at smaller
separations.
For a given threshold, we run two chains using the

fiducial pipeline: one on a baseline (systematics-free)
synthetic data vector and one on a contaminated synthetic
data vector which includes the modification of the OWLS-
AGN matter power spectrum. Our most important criterion
for selecting a threshold is that the peaks of the baseline and
contaminated posteriors in the 2-D parameter subspace of
S8 ×Ωm must be separated by less than 0.3σ. We make this
analysis additionally conservative by fixing redshift and
shear uncertainties and the neutrino mass. It is also worth
noting that scale cuts for the cosmic shear correlations ξij�
are determined in tandem with the 2 × 2pt and 3 × 2pt
analyses. That means a candidate cut passing the < 0.3σ
threshold for cosmic shear is then combined with cuts from
the analogous 2 × 2pt analysis, and the finally selected
scale cuts for cosmic shear and 2 × 2pt are those which also
satisfy 3 × 2pt < 0.3σ. In practice, this procedure ensures
that the full DES Y3 analysis is optimized, as opposed to
each probe alone being optimally constraining (although
see the discussion in Sec. IVG 3).
After an iterative procedure, we finally select the scale

cuts that lead to a threshold of Δχ2 < 0.5 for cosmic shear
systematics. These cuts are shown in grey bands in Figs. 2
and 5, and roughly correspond to bounds that are, at the
smallest, θmin;þ ¼ 2.4 and θmin;− ¼ 30 arcmin in ξþ and ξ−
respectively, but differ significantly between redshift bin
pairs. The large-scale limit of the data vector is 250 arcmin,
chosen to match the DES Y1 analysis [7]. After cuts, we are
left with 166 and 61 angular bins in ξþ and ξ−, or a total of
227 data points.
Figure 5 demonstrates that, by making our data immune

to the feedback impact of OWLS-AGN, we are also safely
excluding parts of the data vector that are affected by
systematic uncertainty due to the matter power spectrum
modeling (Euclid Emulator; [121]), baryonic feedback
(MassiveBlack-II, Horizon-AGN, and Eagle; respectively
[149–151]) and higher order shear corrections including
reduced shear and source magnification (Sec. VA 2 and
[89]). See Sec. V for more details. It is important to note
that error bars on ξþ and ξ− are, at their smallest, around
15% and 20% of the signal, so the deviations seen in Fig. 5
are well below the sensitivity of our data. We refer the
reader to Krause et al. [89] for an exploration of different

baryonic power spectra, and in particular other extreme
feedback cases such as Illustris [152].

3. ΛCDM Optimized scale cuts

As discussed above, our fiducial choice of scale cuts, by
construction, optimizes the joint 3 × 2pt analysis of Dark
Energy Survey Collaboration [73], which includes not just
cosmic shear, but also galaxy clustering and galaxy-
lensing. Those scale cut tests were also required to pass
the same tolerance threshold in both ΛCDM and wCDM,
making the exercise even more stringent. The end result is
that the fiducial scale cuts used for Y3 cosmic shear (both
in this work and in [72]) are more conservative than strictly
necessary for the baseline cosmic shear-only ΛCDM
analysis. For this reason we repeat a subset of our analyses
with an alternative set of relaxed scale cuts, designed to
maximize the constraining power in cosmic shear and
3 × 2pt ΛCDM alone (referred to as the “ΛCDM opti-
mized” analysis, disregarding 2 × 2pt-alone and wCDM).
These optimized cuts increase the total number of data
points from 227 to 273 (184 ξþ and 89 ξ−). We discuss the
improvement in constraining power that comes from this
choice in Sec. VI. While the gain in angular scales is not
uniform across redshift bins, the minimum scale is reduced
by a factor of 20–70% for different bin pairs. We show the
ΛCDM optimized scale cuts as darker grey bands on Fig. 5
(compared to the lighter grey bands which correspond to
the fiducial scale cuts and eliminate more data points on
small scales).

H. Choice of priors

The priors on cosmological and nuisance parameters are
summarized in Table I. Our choice of cosmological priors is
relatively conservative, in order to ensure that the posterior
distributions can span any point in parameter space we
believe to be reasonable. Although the argument can be
made for imposing more informative priors on our less
well constrained parameters (primarily Ωb and h) based on
external data (e.g. Planck), we choose not to do so here. The
main reasoning here is that we want to maintain the
statistical independence of the DES Y3 cosmic shear data,
to avoid double-counting information when combining our
results with external datasets.
In contrast, we do impose informative priors on the

measurement systematics (i.e. shear bias and photo-z error),
which are derived from image simulations [77,78] and tests
using BUZZARD [55,79]. More details on how these priors
were chosen, and the dominant uncertainties can be found
in those papers. It is worth bearing in mind that, while
cosmic shear has only limited potential to self-calibrate
photo-z errors [153], the combination with galaxy cluster-
ing and galaxy-galaxy lensing breaks parameter degener-
acies; in the current study we are prior dominated in these
systematics parameters, but in the 3 × 2pt case this is
significantly less true [73].
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We choose uninformative priors on all of the five IA
parameters, motivated by the relative lack of constraints
reported in the literature for the TATT model (with the
exception of [136]). Since IAs are highly sensitive to
the composition of the galaxy population, as well as
physical characteristics like redshift and luminosity, deriv-
ing appropriate priors is a complicated matter. We consider
whether these IA parameters are detected by the data in
Sec. VI C.

It is finally worth remarking that marginalizing posterior
distributions from a high-dimensional parameter space
down to 1D is prone to projection effects that can
significantly displace the full-dimensional best-fit from
the mean (or peak) of the 1D parameter distributions.
The magnitude of these effects can be nontrivially affected
by the choice of priors, particularly on the parameters that
are not well constrained by cosmic shear data alone.
We again refer the reader to Krause et al. [89], where tests

FIG. 5. The theoretical contribution of different modeling systematics to ξ�; for each systematic we show the fractional impact,
relative to the fiducial caseΔξ� ≡ ðξ� − ξsyst� Þ=ξ�. Fiducial scale cuts are shown as light shaded bands and are derived jointly for cosmic
shear, 2 × 2pt and 3 × 2pt. Darker bands correspond to (less stringent) scale cuts that are optimized for cosmic shear and 3 × 2pt in
ΛCDM only. Error bars on ξþð−Þ are, at their smallest, around 15% (20%) of the signal, so the maximum contamination shown here
Oð1–5%Þ is still significantly below the sensitivity of our data. We also find that none of these forms of contamination project translate
into a bias in cosmological parameters at Y3 precision, despite appearing coherent in some redshift bins. Eagle (black dashed), Horizon-
AGN (solid blue), MassiveBlack-II (solid yellow), and OWLS-AGN (solid green) represent scenarios for baryonic physics, and obtained
from the power spectra of hydrodynamic simulations, while Euclid Emulator (dot-dashed red) modifies the nonlinear gravity-only power
spectrum. Higher order corrections (dashed purple) is the theoretical impact of reduced shear and source magnification.
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of these effects using the priors given in Table I can be
found.

V. MODEL ROBUSTNESS TESTS
ON SYNTHETIC DATA

We now test the assumptions of the model set out in the
previous section using contaminated mock data. The idea is
that we generate data with astrophysical effects that are not
contained in the model, and seek to quantify the level
of bias they can cause to parameters of interest. These tests
fall into two different categories, both involving syntheti-
cally generated ξ�: noiseless analytic data (which is
produced using the theory pipeline), and simulated data
(measured using mock catalogs from N-body simulations).

Chronologically, all of the tests described in this section
were performed before unblinding.

A. Analytically generated data

We analyze these data with the fiducial model, priors and
analysis choices (including scale cuts), to verify that the
inferred cosmological constraints are biased by less than
0.3σ in the S8 ×Ωm plane. Figure 5 shows the systematic
contributions to the contaminated data vectors for a number
of the tests described below.

1. Nonlinear matter power spectrum

By construction, the scale cuts defined in Sec. IVG are
conservative and mitigate most of the impact of small-scale
modeling uncertainties in the 3-dimensional gravity-only
matter power spectrum. To show that these uncertainties
are negligible, we generate a synthetic cosmic shear data
vector using the gravity-only Euclid Emulator [121]. Though it
can be used at a relatively restricted range of cosmologies, the
emulator is the most accurate method for estimating the
nonlinear PδðkÞ currently available to the community.
The deviation between this data vector and the fiducial
prediction is shown in Fig. 5 (dot-dashed red), and is at most
∼1 percent on the scales included in our analysis. We verify
that the bias in cosmological parameterswhen analyzing these
mock datawith the fiducialΛCDMmodel is below 0.3σ [89].
In addition to the test of the nonlinear growth model,

we also generate synthetic data vectors using matter
power spectra derived from the Horizon-AGN, Eagle,
and MassiveBlack-II hydrodynamic simulations (Fig. 5,
[150,154,155]). The Pδ obtained from these simulations
contain the imprint of baryonic feedback processes.
Although these effects are notoriously difficult to model,
the simulations are useful as a measure of the range of
uncertainty in the baryonic contributions. That is, if we can
demonstrate insensitivity to a range of (at least semi-)
realistic scenarios, then that offers some reassurance that
our cosmological results are unaffected. We confirm that
the resulting biases are significantly smaller than 0.3σ [89].
At some level this result is expected, since our fiducial scale
cuts are constructed based on the OWLS-AGN model,
which is a relatively extreme feedback scenario. It does,
however, demonstrate that our scale cut prescription is
generally conservative, and is not fine-tuned to the specific
redshift or scale dependence of OWLS-AGN.

2. Higher-order shear contributions

We also verify that the effects of reduced shear,
source sample magnification and source clustering do
not affect the cosmic shear constraints significantly.
These generally enter as higher-order corrections. For
the case of reduced shear and source magnification, the
correction to the convergence angular power spectrum has
the form [156–158]:

TABLE I. A summary of the priors used in the fiducial Y3
analysis. The top seven rows are cosmological parameters, while
those in the lower sections are nuisance parameters correspond-
ing to astrophysics and data calibration. We fix w ¼ −1 when
analyzing ΛCDM. Priors are either uniform (U) or normally
distributed, N ðμ; σÞ.
Parameter Prior

Cosmological parameters
Ωm U½0.1; 0.9�
As U½0.5; 5.0� × 10−9

Ωb U½0.03; 0.07�
ns U½0.87; 1.07�
h U½0.55; 0.91�
Ωνh2 U½0.6; 6.44� × 10−3

w U½−2;−0.333�
Calibration parameters
m1 N ð−0.0063; 0.0091Þ
m2 N ð−0.0198; 0.0078Þ
m3 N ð−0.0241; 0.0076Þ
m4 N ð−0.0369; 0.0076Þ
Δz1 N ð0.0; 0.018Þ
Δz2 N ð0.0; 0.015Þ
Δz3 N ð0.0; 0.011Þ
Δz4 N ð0.0; 0.017Þ
Intrinsic alignment parameters
a1 U½−5; 5�
a2 U½−5; 5�
η1 U½−5; 5�
η2 U½−5; 5�
bTA U½0; 2�
Shear ratio parameters
Δzlens1

N ð−0.009; 0.007Þ
Δzlens2

N ð−0.035; 0.011Þ
Δzlens3

N ð−0.005; 0.006Þ
δlensz;1 N ð0.975; 0.062Þ
δlensz;2 N ð1.306; 0.093Þ
δlensz;3 N ð0.870; 0.054Þ
b1−3g U½0.8; 3�
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ΔCij
κ ðlÞ ¼ 2ð1þCi

sÞ
Z

d2l1

ð2πÞ2 cos2ϕl1
Bij
κ ðl⃗1; l⃗− l⃗1;−l⃗Þ;

ð30Þ

where Bij
κ is the convergence bispectrum, Ci

s is a magni-
fication coefficient related to the slopes of the flux and size
distributions [157] and ϕl1 is the angle between modes l⃗

and l⃗1. We show in Fig. 5 this contribution to the shear
power spectrum for the source magnification coefficients
C1.::4
s ¼ ð−1.17;−0.64;−0.55; 0.80Þ as measured by Elvin-

Poole et al. [159] in each redshift bin. We note that the
theoretical modeling of nonlinear scales in the matter
bispectrum is a dominant source of uncertainty in the
calculated correction (see for instance [160]). In particular,
we utilize the nonlinear (HaloFit) power spectrum in the
tree-level bispectrum description, but future analyses will
possibly benefit from improved approaches, such as
BiHaloFit [161]. Still, the largest potential biases as seen
in Fig. 5 are< 5%, smaller than our error bars (≳15%). We
also find, like Prat et al. [162] demonstrate for galaxy-
galaxy lensing, that the reduced shear contribution to
cosmic shear as computed perturbatively overestimates
the impact of that correction when compared to measure-
ments of reduced shear on BUZZARD simulations. The
leading sources of higher-order corrections and their
contribution for DES Y3 are computed in more detail in
Krause et al. [89]. Their results confirm that these effects
are negligible in terms of parameter constraints, and
provide a guide for future DES and next generation
analyses.

3. Intrinsic alignments

Prior to unblinding of the real data, we carried out a
series of tests designed to verify the robustness and
sufficiency of our fiducial choice of intrinsic alignment
model. Our expectation is to find, using synthetic data, a set
of model choices that prevent biases coming from an
incorrect characterization of IA. To this end, we generate
two simulated data vectors: one including full TATT
contributions with input parameters given by the mean
posterior IA constraints from the Y1 3 × 2pt analysis of
[136] (a1 ¼ 0.7, a2 ¼ −1.36, η1 ¼ −1.7, η2 ¼ −2.5,
bTA ¼ 1), and an another with the NLA subset of those
parameters (a1 ¼ 0.7, η1 ¼ −1.7, a2 ¼ 0, bTA ¼ 0). Our
results can be summarized as:

(i) Fitting the NLA data vector with either the NLA or
TATT model results in no significant biases. Pro-
jection effects in the 1D S8 posterior are negligible in
both cases. The more complex model weakens the
constraint by increasing the S8 error bar by 14%. See
Appendix C for a discussion of this on real data,
where we find a somewhat similar loss in con-
straining power.

(ii) Likewise, and as expected, fitting the TATT data
vector using TATT recovers the input cosmology
and IA parameters.

(iii) Fitting the TATT data vector with the simpler NLA
model results in significant residual bias in σ8, S8,
andΩm. We also see artificially tightened constraints
in this case, as the posteriors on some parameters
begin to hit the prior edges, and a significantly
degraded best-fit χ2.

The findings above are summarized in Fig. 6, and a more
detailed discussion of these tests, and what they reveal
about the systematic error budget, can be found in
Appendices B and C. The configuration which presented
significant biases (NLA modeling of TATT synthetic data)
should be considered as a sufficiency test of the simpler IA
model, which NLA fails to meet at the synthetic data level.
This means that, given our expectation from the DES Y1
results of Samuroff et al. [136], and given our deliberate
choice of relying solely on synthetically generated data to
make a model selection at the blinded analysis stage, our
findings provide a strong argument for adopting TATT as
our fiducial choice. In summary, previous results on DES
Y1 data do not allow us to rule out alignments at the level
present in the simulated TATT data vector used in these
tests, and we thus choose TATT as our fiducial model. We
explore in Sec. VI C 2 whether this pre-unblinding expect-
ation of the inadequacy of NLA to fit our data is actually
realized and what level of IA complexity our data seems to
point to. Foreshadowing that discussion, post-unblinding

FIG. 6. Posteriors from the analysis of synthetic data vectors
with differing input IA signals, with a known input cosmology
(black cross). Strikingly, if IAs in DES Y3 are present at the level
of those in the synthetic TATT data vector (chosen to match the
DES Y1 result of [136]), the NLA model is not sufficient to
recover the true cosmology (blue contours). We explore whether
this scenario is actually reproduced in real data in Sec. VI C 2. All
other model/data combinations recover the input cosmology to
within significantly less than 1σ.
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we find NLA to be compatible with DES Y3 data, and that
our results for S8 are robust to the choice of the IA model.
Our fiducial setup makes the explicit assumption that the

redshift evolution of IAs in DES Y3 can be adequately
described by a power law [Eqs. (24) and (25)]. To test this
particular analysis choice, we produce synthetic data
using the recipe set out in ([66]; see their Sec. IVA). In
brief, we assume a particular luminosity scaling for the
linear alignment strength β1, which is combined with a
measured luminosity function from the Deep Extragalactic
Evolutionary Probe2 (DEEP2; [163]) spectroscopic survey,
and the measured red fraction fredðzÞ, to predict an IA
signal with a nontrivial redshift dependence. Both the
redshift and luminosity evolution of red and redþ blue
galaxies are thus extrapolated (not measured) down to the
limiting magnitude over the redshift range of the DES
sample. Our baseline is to use the best fitting β1 from
Joachimi et al. [164] and assume zero alignments in blue
galaxies. Note that while constraints on the luminosity
dependence of the a2 component of the TATT model do
exist in the literature, they are still relatively weak, and
consistent with β2 ¼ 0; for this reason, we restrict ourselves
to the NLA case. The results are described in more detail in
Krause et al. [89], which also includes similar tests in the
context of 2 × 2pt and 3 × 2pt analyses. With our fiducial
input parameters, we find biases of up to 0.5σ. Although
larger than our 0.3σ passing requirement, it is worth bearing
in mind that this test relies on a number of assumptions and
extrapolations and is quite possibly unrealistically strin-
gent. Given this, and in the absence of a stronger test,
we maintain our fiducial model and decide to test for
the redshift scaling of the a1 parameter a posteriori, after
unblinding, in Sec. VII.
Finally, we assess whether the interaction between

erroneous calibration of photo-zs and their uncertainties
and our IA model can lead to biased estimates of cosmol-
ogy. A rationale for this test is that photo-z mischaracte-
rization can produce amplitude shifts in cosmic shear
correlations. These shifts can potentially be degenerate
with IA model parameters, and bias their posterior dis-
tributions, which in turn can lead to biases in cosmology as
discussed, e.g. by Wright et al. [58]. Another example is
when nðzÞ distribution tails are underestimated in the data,
leading to an erroneous assumption of small overlap
between redshift bins and consequently a suppressed II
contribution, which is more sensitive to this overlap than
the lensing signal is (see also Appendix C of [130]).
We seek to test our robustness to such redshift-IA

interactions by reanalyzing the synthetic TATT data vector
described above repeatedly using alternative (incorrect)
redshift distributions in the modeling. For this test, we use
the fiducial analysis setup including redshift error as
parametrized by free Δz shift parameters. Rather than
introducing analytic distortions to the fiducial nðzÞ, we
draw alternative realizations from the ensemble generated

by the SOMPZ pipeline [79]. This should naturally capture
plausible cases of redshift error, beyond what can be
captured by a simple shift in the mean z. We select three
redshift realizations representative of a range of cases in
terms of the change in the predicted data vector (Δχ2). The
results are shown in more detail in Appendix B, but in brief
we find only small (< 0.3σ) shifts in S8 in the different
scenarios. Even in the most extreme case, where Δχ2 ∼ 14,
the input IA parameters and cosmology are accurately
constrained. In summary, at the level of synthetically
generated data with plausible fluctuations in nðzÞ, we do
not see evidence that the relatively flexible IA model is
absorbing redshift error to a degree that could bias
cosmology or IA parameters.

B. Mock data from N-body simulations

While most model tests are performed using noiseless
analytic data vectors, a subset of tests make use of mock
catalogs from N-body simulations. We employ two sets of
simulations: BUZZARD [165] and the MICE-Grand
Challenge Galaxy and Halo Light-cone catalog13 [166].
With BUZZARD, a thorough testing of the DES Y3 meas-
urement, photo–z and likelihood pipelines is performed not
only for cosmic shear but also for the other DES 3 × 2pt
probes [88]. With MICE, we focus specifically on testing
the IA model.

1. BUZZARD v2.0

The BUZZARD v2.0 simulations (BUZZARD hereafter) are a
suite of 18 simulated galaxy catalogs built on N-body
lightcone simulations [165,167,168]. The N-body simula-
tions are produced using the L-Gadget2 N-body
code, a memory optimized version of Gadget2 [169]. The
initial conditions for the simulations are generated at z ¼
50 using 2LPTIC and linear power spectra computed by
CAMB at the BUZZARD flat ΛCDM cosmology:
ðσ8; ns; h;Ωm;ΩbÞ ¼ ð0.82; 0.96; 0.7; 0.286; 0.046Þ. Each
simulation is run on three different and independent
boxes with sizes ð1.0; 2.6 and 4.0Þ3 h−3 Gpc3 containing
ð1400; 2048 ; and 2048Þ3 particles respectively, and a
lightcone with footprint area over 10; 000 deg2 is produced
from each of the sets. Galaxies are included in these
lightcones with properties such as position, ellipticity
and spectral energy distribution using the ADDGALS algo-
rithm, with details specified in [168].
Weak lensing quantities are introduced via ray-tracing

[170], and the complete 3 × 2pt cosmology analysis of
DES Y3 is reproduced in these simulations [88]. For the
validation of cosmic shear, BUZZARD provides a way to
verify that several astrophysical effects ignored in our
modeling are, as expected, sub-dominant. In addition to
higher order corrections from reduced shear and source

13https://cosmohub.pic.es/home.
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sample magnification which are also examined in this
paper, BUZZARD mocks contain source galaxy clustering,
anisotropic redshift distributions across the survey area and
multiple-plane lensing deflections. We point the reader to
DeRose et al. [88] for more details.

2. Intrinsic alignments testing with MICE

The MICE Grand Challenge run is an N–body gravity-
only simulation with 40963 collisionless particles with
masses 2.927h−1 M⊙ in a 3072 h−1 Mpc box using
a flat ΛCDM cosmology with ðσ8; ns; h;Ωm;ΩbÞ ¼
ð0.8; 0.95; 0.7; 0.25; 0.044Þ. Dark matter halos are identi-
fied as friends-of-friends groups and populated with
synthetic galaxies using a hybrid method of halo
occupation distribution modeling and abundance matching
[166,171–174].
Although MICE does not account for baryonic feedback

and other hydrodynamic processes related to galaxy for-
mation and evolution, an intrinsic galaxy alignment signal
is implemented in the mock using a semianalytic technique
(Appendix A; see [175] for a detailed overview). In brief,
shapes and orientations are assigned to galaxies based on a
combination of their color and luminosity, and the spin
and orientation of the host halos. The model is conceptually
similar to those of Okumura et al. [176] and Joachimi et al.
[177,178], and has been tuned to match the distribution of
galaxy axis ratios from COSMOS observations [179,180]
in bins of redshift, stellar mass and color. Various
diagnostic tests have been carried out, and it has been
shown to reproduce the projected intrinsic galaxy-shape
correlation wgþ of luminous red galaxies in the spectro-
scopic BOSS LOWZ sample [181] as a function of
luminosity [175].
The MICE IA mock is particularly valuable for our

purposes, since it provides an alternative IA prediction with
its own redshift dependence, which does not assume either
NLA or TATT. At the time of writing, however, only a
single realization of the IA mock is available, and we thus
we cannot apply the more stringent criteria of DeRose et al.
[88] for validating the DES Y3 pipeline on simulations. For
this reason, passing the tests presented in this subsection
was not an unblinding prerequisite.
We describe in Appendix A how a source sample is

created with the MICE mock which reproduces basic DES
Y3 specifications. The measurement of cosmic shear
correlation functions ξ� is made using TreeCorr in a similar
way to on the real Y3 data. Since the MICE catalog
contains the gravitational shears γ1;2 (G) and the intrinsic
shapes ϵ1;2 (I), we can estimate the GG, GI, and II
components separately if desired. We thus measure two
data vectors: a version which contains the GG signal only
(the “baseline”) and another version in which Gþ I shears
are summed together ([182]; Eq. 3.2). In this second case,
the two-point correlations correspond to GGþ GIþ II (a
“contaminated” data vector including the noisy IA signal).

With the shape noise and effective number density of MICE
galaxies per redshift bin determined in Appendix A, we
construct an analytic covariance using CosmoLike [105], but
rescale the shape noise terms so that the figure-of-merit of
the fiducial model constraints in the S8 × Ωm plane is
similar to that of the other simulated cosmic shear
tests. We employ the fiducial scale cuts and nuisance
parameters.
With the same likelihood pipeline used in other tests, we

find that the bias (distance between posterior peaks) in the
S8 × Ωm plane between the baseline and contaminated data
vectors is 0.6σ for the fiducial (TATT) IA model. A similar
run, but using NLA as the model, results in a 0.3σ bias
between baseline and contaminated data. Since the more
flexible TATT model should, in principle, be able to capture
any IA scenario that NLA can, we ascribe this difference to
competing shifts due to the statistical fluctuations and the
simpler IA model, which partially cancel. Furthermore, the
posteriors from a1 and η1 coming from the two models are
fully consistent.
One important caveat here is that we have only a single

noise realization; the size of the biases quoted for NLA and
TATT therefore cannot be decoupled from fluctuations due
to shape noise and cosmic variance. This point complicates
the interpretation of our results. That said, there is a
qualitative difference between the MICEþ IA simulated
data vectors and the other synthetic ξ� vectors: while all
other data are analytically generated using either the NLA
or TATT model, the MICE data are agnostic with respect to
the analytic model and are tuned to fit observed IA signals
(albeit at significantly lower redshifts). It is, then, reassur-
ing that we obtain reasonable IA constraints, and the
cosmological parameters S8 and Ωm are not catastrophi-
cally biased. Analysis of a greater number of MICEþ IA
mocks, in order to disentangle IAs from noise and cosmic
variance, is an interesting extension left for future work, but
beyond the scope of this paper.

VI. PARAMETER CONSTRAINTS

In this section we present the baseline cosmic shear
constraints from DES Y3. Section VI A presents our
main results in ΛCDM, Sec. VI B shows we find no
detection of the dark energy equation of state parameter
w, and Sec. VI C 2 presents a detailed comparison of the
evidence for different IA models. A series of extended
models, including parametrized deviations from general
relativity, and additional neutrino species, will be discussed
in [74], which is in preparation. A number of external
datasets are introduced in this section, details of which
can be found in Sec. VIII A. For a summary of our fiducial
results, and of the robustness tests discussed in the next
section, see Table II and Fig. 10. To facilitate comparison of
constraining power, we also show the 2D S8–Ωm figure of
merit (FoM), which is defined as FoM≡ detfCS8;Ωm

g−1=2,
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where CS8;Ωm
is a subblock of the parameter covariance

matrix.

A. ΛCDM
The posteriors from our fiducial analysis are shown in

Fig. 7, along with our ΛCDM optimized result (with

scale cuts that maximize the constraining power in
ΛCDM, see Sec. IV G; black dashed), alongside Planck
2018 TTþ TEþ EEþ lowE (no lensing, [183]; yellow).
As with almost all previous lensing analyses to date, DES
Y3 favors a somewhat lower S8, a pattern we discuss further
in Sec. VIII B 2. The marginalized mean S8 and Ωm values
in ΛCDM are

TABLE II. A summary of cosmological constraints from DES Y3 cosmic shear. In each case in the top 9 rows, we show the posterior
mean and 68% confidence bounds on each S8 and Ωm, as well as the maximum posterior S8 value (denoted Ŝ8), the 2D S8–Ωm figure of
merit and the goodness-of-fit. These top rows also include, as a default, the shear ratio likelihood. Avisual summary of the S8 constraints
can be seen in Fig. 10. Constraints from KiDS-1000 and HSC are as nominally reported and were not reprocessed under the DES Y3
priors and analysis choices, while Planck 2018 numbers have been obtained under DES Y3 cosmology priors.

S8 Ŝ8 σ8 Ωm FoMS8Ωm
χ2=dof

Fiducial ΛCDM 0.759þ0.023
−0.025 0.755 0.783þ0.073

−0.092 0.290þ0.039
−0.063 927 237.7=222 ¼ 1.07

ΛCDM -Optimized 0.772þ0.018
−0.017 0.774 0.795þ0.072

−0.076 0.289þ0.036
−0.056 1362 285.0=268 ¼ 1.06

No IAs 0.774þ0.017
−0.018 0.760 0.775þ0.071

−0.077 0.306þ0.040
−0.061 1253 243.3=225 ¼ 1.08

NLA 0.773þ0.020
−0.021 0.773 0.791þ0.070

−0.086 0.293þ0.039
−0.056 1163 242.1=224 ¼ 1.08

NLA, free a1 per z–bin 0.790þ0.022
−0.020 0.783 0.834þ0.075

−0.082 0.275þ0.035
−0.051 1144 246.3=221 ¼ 1.11

a1 > 0 prior 0.755þ0.022
−0.022 0.727 0.731þ0.064

−0.085 0.327þ0.046
−0.066 881 238.7=222 ¼ 1.07

Fixed neutrino mass 0.772þ0.023
−0.023 0.748 0.816þ0.071

−0.094 0.275þ0.040
−0.052 1063 238.3=222 ¼ 1.07

wCDM cosmology 0.735þ0.023
−0.041 0.699 0.723þ0.071

−0.100 0.319þ0.050
−0.071 497 237.5=222 ¼ 1.07

HMcode power spectrum 0.772þ0.026
−0.027 0.791 0.793þ0.088

−0.102 0.294þ0.038
−0.070 827 236.8=222 ¼ 1.06

NLA, ΛCDM -Optimized, fixed neutrino mass 0.788þ0.017
−0.016 0.775 0.825þ0.078

−0.79 0.279þ0.036
−0.053 1501 288.1=270 ¼ 1.07

DES Y1 0.780þ0.027
−0.021 � � � 0.764þ0.069

−0.072 0.319þ0.044
−0.062 625 227=211 ¼ 1.08

KiDS-1000 COSEBIs 0.759þ0.024
−0.021 � � � 0.838þ0.140

−0.141 0.246þ0.101
−0.060 650 85.5=70.5 ¼ 1.21

HSC Y1 Cl 0.780þ0.030
−0.033 � � � � � � 0.162þ0.086

−0.044 461 45.4=53 ¼ 0.86
HSC Y1 ξ� 0.804þ0.032

−0.029 � � � 0.766þ0.110
−0.093 0.346þ0.052

−0.100 402 162.3=167 ¼ 0.97
Planck 2018 TTþ TEþ EEþ lowE 0.827þ0.019

−0.017 � � � 0.793þ0.024
−0.009 0.327þ0.008

−0.017 3938 � � �

FIG. 7. The posteriors of DES Y3 cosmic shear (green) and Planck 2018 (TTþ TEþ EEþ lowE no lensing; yellow). The shaded
green contours are the results from our fiducial analysis, as described in Sec. IV, and constraints using scale cuts that are optimized for a
ΛCDM -only analysis are shown in dashed lines. In each case we show both 68% and 95% confidence levels.
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S8 ¼ 0.759þ0.023
−0.025 ð0.755Þ ðΛCDMÞ

Ωm ¼ 0.290þ0.039
−0.063 ð0.293Þ ðΛCDMÞ;

where uncertainties are 68% confidence intervals. These
1D constraints represent our best estimate for the uncer-
tainties within our analysis framework. It is worth bearing
in mind, however, that comparison of constraining power
between different lensing surveys is complicated by
differences in the analysis choices and priors [184]. Our
fiducial ΛCDM analysis has 222 effective degrees of
freedom.14 At the maximum posterior (MAP) point we
obtain χ2=dof ¼ 237.7=222 ¼ 1.07, and a corresponding
p–value of 0.22.
One important question arising from Fig. 7 is the extent to

which the DES and Planck results are consistent with each
other. Given that we are considering a complex 28 dimen-
sional parameter space, assessing agreement purely using
projected contours can be misleading (see [86] for discus-
sion). We present a more rigorous quantitative discussion of
possible tensions with external datasets in Sec. VIII B.
Different angular scales of the cosmic shear correlation

function have slightly different sensitivities to cosmological
parameters [20]. The degeneracy between σ8 and Ωm is
such that the best constrained combination is S8 ¼
σ8ðΩm=0.3Þα with α ≈ 0.5, but we can also determine
the exponent α directly from the data. We carry out a
principal component analysis of the projected ΛCDM
posteriors to obtain the exponent value that most effectively
decorrelates σ8 and Ωm. We find in our fiducial ΛCDM
TATT analysis that α ¼ 0.586. To avoid confusion, we call
the corresponding lensing amplitude Σ8 and find:

Σ8 ≡ σ8ðΩm=0.3Þ0.586 ¼ 0.756þ0.021
−0.021 ð0.729Þ ðΛCDMÞ:

Also shown in Fig. 7 (black dashed) are the results of our
optimized cosmic shear analysis. The details of, and
justification for, this additional analysis can be found in
Sec. IVG 3, but the key idea is to use a set of scale cuts that
are tuned to maximise the constraining power of cosmic
shear alone in ΛCDM. The result is a tighter constraint in
the S8–Ωm plane in ΛCDM:

S8 ¼ 0.772þ0.018
−0.017 ð0.774Þ ðΛCDM OptimizedÞ:

As can be seen in Fig. 7, the gain in constraining power is
asymmetric about the posterior peak, which has the effect
of shifting the mean S8 up slightly. We consider the impact

of this in terms of statistical consistency in Sec. VIII B.
The extra data points increase the number of effective
degrees of freedom to 268, giving a goodness-of-fit at the
maximum posterior of χ2=dof ¼ 285.0=268 ¼ 1.06, with a
p-value of 0.22, similar to the fiducial analysis.

B. wCDM

A simple extension to ΛCDM is to free the dark energy
equation-of-state parameter (previously fixed to w ¼ −1).
The prior bounds on w in Table I are chosen such that
cosmic acceleration is ensured by w < −1=3, and “phan-
tom” models with −2 < w < −1 are allowed. To assess the
statistical preference of our data for this extended model,
we evaluate the evidence ratio (see Sec. IVA) between
ΛCDM and wCDM and find

Rw=Λ ¼ 0.94� 0.22;

which, based on the Jeffreys scale, is inconclusive in terms
of preference for the model with free w. We thus find no
evidence for (or against) a departure from ΛCDM using
DES Y3 cosmic shear data alone.
While w is unconstrained by cosmic shear data within

our priors, we can still constrain S8 in that parameter space,
and we show its marginalized value in Fig. 10. We find a
shift toward lower lensing amplitude, qualitatively imply-
ing that this model extension would not help to provide a
solution to the differences with respect to Planck.

C. Intrinsic alignments

In addition to the main cosmological results, it is also
interesting to consider what our data can tell us about IAs.
Since we see no evidence that redshift error is biasing our
IA results (see Appendix B), the IA parameters have a
physical interpretation, and are potentially useful for future
lensing analyses. For details about how changes in the IA
model can affect the inferred cosmology see Sec. VII B.

1. IA model constraints

In Fig. 8 we show the IA posteriors in both TATT and
NLA, as well as in the optimized ΛCDM analysis and NLA
with a fixed redshift evolution parameter (for the numerical
values, see Table III). Note that there are additional
parameters in the full model (redshift indices and bTA),
which are only weakly constrained and so are not shown
here (see Appendix D for the full posterior). In all model
scenarios, the data favor a smaller IA signal than DES Y1,
although the values are consistent within the uncertainties
(see Fig. 12 in [136]), resulting in a total GIþ II con-
tribution that is only at the level of a few percent of the
cosmological signal (as shown in Fig. 2). In the fiducial
TATT case, the data favor mildly negative a1, combined
with a2 > 0:

14We calculate the effective number of d.o.f. following Raveri
and Hu [185], as the number of data points for ξ� after scale cuts
(227) minus the number of effective parameters (Np;eff ≈ 5),
given by Np;eff ≡ Np;nom − TrfC−1

Π Cpg, where Np;nom is the
nominal number of free parameters and CΠ, Cp are respectively
the covariances of the prior and posterior. As Np;eff can change
with different modeling choices, we recompute it whenever
necessary.
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a1 ¼ −0.47þ0.30
−0.52 ð−0.73Þ ðTATT ΛCDMÞ

a2 ¼ 1.02þ1.61
−0.55 ð1.88Þ ðTATT ΛCDMÞ:

We observe asymmetric error bars in the posteriors of a1
and a2 and also find slight evidence for a secondary peak
with reversed signs of the parameters. This hint of
bimodality in the IA subspace can be readily understood
within our model: contributions to power spectra in
Eqs. (21)–(23) that scale as a21, a

2
2 or a1a2 are insensitive

to positive/negative sign flips. This degeneracy is further
enabled in our present regime, where IA signals are small
compared to the measurement errors, and terms propor-
tional to a1 and a2 partially cancel each other when they
have opposite signs. We also note that the secondary peak is
less pronounced in the optimized analysis shown in Fig. 8,
and Amon et al. [72] shows that the addition of the shear
ratios data in our fiducial constraints has already contrib-
uted to suppressing the bimodal feature. We thus interpret

this doubly peaked posterior as an internal degeneracy of
the model that is broken as statistical power increases. Note
that forcing a prior such that a1 > 0, eliminating one of the
peaks, also leads to essentially unchanged cosmology
results (see below and in Sec. VII B).
It is worth bearing in mind that the a1 ¼ a2 ¼ 0 point lies

within the bounds of the 2D 1σ contour, and it is plausible
that the negative best-fit a1 is simply the result of a small true
IA amplitude and noise (see also Appendix A). We also
confirm that rerunning our fiducial analysis with a prior that
forces a1 > 0 (in line with expectation from observations of
red galaxies and the theory of tidal alignment) shifts the IA
constraints, and results in a negative a2, as consistent
with our Y1 results, but does not appreciably alter the
confidence contours in the S8–Ωm plane. If we restrict
ourselves to the simpler (two-parameter) NLA model,
the data still favor negative a1, although at lower signifi-
cance (a1 ¼ −0.09þ0.20

−0.13 ). Again, this is lower than the Y1
results, both from cosmic shear alone and in combination

FIG. 8. Posterior parameter constraints from the fiducial ΛCDM cosmic shear analysis (TATT, green), which includes shear ratios as a
fiducial choice. The solid blue (NLA) and dot-dashed yellow (NLA without redshift evolution) contours show the results of the same
cosmic shear analysis, but using alternative (simpler) IA models. We also include our ΛCDM optimized TATT result (dashed black). As
before, both 68% and 95% confidence levels are shown. We find that different IA models lead to consistent results and similar goodness-
of-fit (see Table III), and the main difference between them is the change in constraining power.
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with galaxy–galaxy lensing and galaxy clustering (a3×2pt1 ¼
0.49þ0.15

−0.15 , a1×2pt1 ¼ 1.03þ0.45
−0.57 ; see [186] and Table 5 in

[136]). The impact of the optimizedΛCDM analysis, which
includes extra small-scale information, is to tighten the
contours in the a1–a2 plane (compare the shaded green and
black dashed lines in Fig. 8), and it does not qualitatively
change our conclusions here.
One detail worth noting is that all of the posteriors

presented in this paper include a contribution from shear
ratios. The small-scale (∼2–6 Mpc=h) galaxy–galaxy lens-
ing information significantly improves our ability to con-
strain IAs (see Fig. 10 of [81]). That said, it has been
demonstrated that the use of γt on large (instead of small)
scales for the SR likelihood does not substantially change
the favored IA scenario [81]. It has also been shown that
removing the SR likelihood altogether results in consistent,
though broader, constraints in the a1–a2 plane [72].
We illustrate the redshift dependence of the inferred IA

signal in Fig. 9, which can be compared to the analogous
version from DES Y1 in Fig. 16 of Troxel et al. [7], and
also to Fig. 7 of Dark Energy Survey Collaboration [73]. In
IA models where we use a parametric redshift dependence
(TATT and NLA), one can derive effective amplitudes for
each redshift bin j as aji ¼ aið1þ z̄j=1þ z0Þηi , where
i ∈ ð1; 2Þ. The points and error bars in Fig. 9 are the mean
and marginalized 68% confidence contours of these derived
parameters. In all cases the tidal alignment amplitude a1 is
consistent between models to ∼1σ.

FIG. 9. Effective IA amplitudes a1;2 as a function of redshift.
Note that the green and blue points (both labelled TATT) are the
product of the same analysis, in which a1 and a2 were varied
simultaneously. We report no clear evidence for redshift evolution
in a1, and relatively good agreement between models.TA
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2. IA model selection

In addition to the basic results using variations of NLA
and TATT in the IA implementation, we also perform a
more rigorous model comparison in order to determine
which IA model preferred by the data in a statistical sense.
We explain this concept in more detail below.
First, we rank order models that are subspaces of TATT

by their complexity and step up that list one at a time,
usually by including a new parameter. At each step i, we re-
run a chain to obtain the best-fit χ2 and evidence of the
model. We then compute the evidence ratios (see Sec. IVA)
between the models at step i and i − 1, and between the
model at step i and the fiducial TATT model. In doing this,
we are in principle able to determine at which point in the
complexity “ladder” our data stops justifying the addition
of extra IA parameters.
The order of the model complexity we use is not

rigorously defined, but it follows the logic of the perturba-
tive modeling approach. The simplest possible case is a
model with no IA. We then consider tidal alignment (TA)
less complex than models with tidal torquing (TT), and
within these categories, models without redshift depend-
ence are less complex. Thus, the simplest IA model under
consideration has a1 free and all else held fixed, followed
by a1 with a free power-law parameter for redshift
evolution, η1, and so on up to the (fiducial) 5-parameter
TATT (see Table III).
In order to minimize sampling noise in the estimate of

the best-fit χ2, we set polychord to output 10× more
samples than its default. We verify that sampling the
parameter space with a maximum posterior finder leads
to χ2 values that are insignificantly different from our best-
fit (Δχ2 < 1). We obtain the evidences as a standard output
of polychord. At each step, we also report the constraints on
the marginalized IA parameters and their 68% confidence
intervals.
With this method, we aim to find how many of the TATT

parameters meaningfully improve the fit to the data. The
evidence ratios are especially suited for this purpose
because even though a model with an extra IA parameter
might be constrained, the Occam factor in the evidence
ratios can still penalize that model if the required prior
volume is excessive when compared to a simpler model,
Eq. (7). We note that according to our analysis choices, this
procedure can only be carried out after the data and
constraints are unblinded, and so we could not have applied
the same reasoning before unblinding (e.g. as a strategy to
optimize the selection of the fiducial IA model).
We have performed this test with SR data vectors built

using both DES Y3 lens samples (redMaGiC and MagLim), as
well as without including the SR likelihood at all, in which
case all information comes from ξ�ðθÞ on relatively large
angular scales. For these three cases we find that the “no IA
model” has the highest evidence, although it is only
“weakly preferred” over the other models, based on the

Jeffreys scale, reflecting the fact that our inferred IA
amplitudes are consistent with zero. We find in all cases
that, once the tidal torquing term a2 is free, the evidence
ratios seem to suggest a preference for a redshift evolution.
Apart from that, we find that the different SR lens samples
yield slightly different levels of preference for the inter-
mediate models such as NLA and NLA without
z-evolution. Our results are shown in Table III, where
stepping down line-by-line corresponds to increasing the
IA model complexity, and for ease of interpretation we
show only the case without the inclusion of the shear ratio
likelihood (so note that the IA constraints presented in the
table do not exactly match the constraints reported else-
where in this work).
In summary, this test, as well those shown in Fig. 8,

suggest that simpler IA models are a sufficient assumption
for modeling the DES Y3 data. While this result is different
from those in the pre-unblinding robustness tests which led
to our choice of fiducial model (see Fig. 6), it is not
inconsistent with expectations. Our earlier simulated tests
used the best-fit TATT parameter values from the DES Y1
measurements. At these values, the impact of higher order
IA contributions was large enough to require the full TATT
model. However, the uncertainty in these Y1 measurements
was fairly large, and they remain consistent with the overall
smaller IA amplitudes found in this Y3 analysis. Smaller
amplitudes allow for a less complex IA model, and indeed
our current data appear to marginally prefer it.
Our results are consistent with other recent results,

including [58,130], which also suggest low IA amplitudes.
While the tests presented here provide additional informa-
tion to the community for planning future analyses, we
emphasize that further study is needed on the underlying IA
behavior of typical source galaxies and the interaction with
other elements on the model, including baryonic feedback
and photometric redshifts, as well as the impact of noise.
We have physical reasons to believe that higher-order IA
contributions exist at some level, and the lack of a
significant detection here does not imply that these terms
can be safely ignored at increased precision or for different
source samples. We encourage careful testing of IA model
sufficiency in future analyses to avoid cosmological biases.

VII. MODEL ROBUSTNESS TESTS
ON REAL DATA

In this section we present a number of analysis permu-
tations, with the aim of stress testing the results described in
the previous section. The tests fall naturally into a number
of groups, which are discussed in more detail in the
following paragraphs. For an overall summary, see Fig. 10.
This exercise is distinct from the tests in Sec. V; whereas

there we were seeking to validate our model implementa-
tion prior to unblinding, we are now seeking to test the
robustness of our unblinded results to reasonable variations
to the analysis choices. Our focus here is on various aspects
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of the theory modeling. For a complementary raft of
internal-consistency and data oriented tests, we refer the
reader to our companion paper [72]. One can also find
extensive catalog-level tests in Gatti et al. [78], which
includes a null detection of shear B-modes in the Y3 data
using both COSEBIs and pseudo-Cls. Further tests of the
PSF model and photo-z catalogs are described in other Y3
papers [55,76,79]. Also note that the details of the Y3
methodology, including the tests described in this section,
were chosen prior to unblinding, and are not informed by
the results described in Sec. VI A.

A. Baryonic PðkÞ and neutrinos

One significant source of systematic uncertainty is
in the modeling of the small- to intermediate-scale matter
power spectrum. Uncertainties at high k arise both as
a result of nonlinear clustering, a process that is typically
calibrated using N–body simulations, and baryonic
physics. Although we have verified our insensitivity
to reasonable changes in baryonic and nonlinear growth
scenarios in Sec. IVG, the tests there use noiseless
synthetic data.

In order to assess the dependence of our results on our
particular choice of PδðkÞ model, we repeat our fiducial
ΛCDM analysis, with an alternative power spectrum esti-
mator. That is, instead of HaloFit, which is our baseline
choice, we use the halo model of Mead et al. [120], which
has a nominal accuracy of 5% at k < 10 hMpc−1, as
assessed by comparison with the Coyote Universe simu-
lations. The halo model includes baryonic effects via two
additional parameters: an amplitude B which governs the
halo concentration-mass relation, and η0, which is referred
to as the halo bloating factor. Wemarginalize over both with
wide flat priors η0 ¼ ½0.4; 1�, B ¼ ½1; 7.5�. These priors
are wider than those utilized by, e.g. Asgari et al. [5] and
are intentionally chosen that way so we are agnostic
with respect to the baryonic effects tested in Mead et al.
[120]. Another difference with respect to the analysis of
Asgari et al. [5] is that we free both parameters independ-
ently, as opposed to assuming a linear relation between
them.
The results of this exercise are shown in Fig. 10 (labeled

“HMcode PðkÞ”) and in Fig. 11. As shown there, there is a
small 0.5σ shift in S8 due to this substitution. We do not,
however, interpret this as the correction of residual

FIG. 10. A summary of marginalized 1D constraints on S8 shown in this paper. In the upper-most panel we show the main
cosmological results of this paper: the DES Y3 cosmic shear constraints using fiducial and ΛCDM Optimized scale cuts. The panel
below (marked “model variations”, rows 1–7) shows a range of modified analyses, designed to test the robustness of the fiducial result,
which are detailed in Secs. VI and VII). In the lower two panels we show equivalent constraints on S8, both from external data
(rows 8–13), and DES Y1 (rows 14 and 15). Points and error bars correspond to the marginal posterior mean and 68% confidence
interval on S8, with the exception of KiDS and HSC (rows 11–13) for which we report nominal headline results. Rows 1–10 are obtained
using the DES Y3 fiducial analysis choices (including cosmology priors), while external lensing and DES Y1 rows 11–15 are not re-
processed to match exactly the Y3 model, prior and scale cuts.
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baryonic physics present in the data, but rather a result of
projection effects. Indeed, we verify that the halo-model
parameters B; η0 are completely unconstrained by the
data within the prior bounds; this is a consequence of
our conservative scale cuts, which are designed to remove
angular scales on which baryonic feedback processes
(and so the halo-model parameters) enter. The small
shift is, therefore, simply an artifact of projecting the
high-dimensional posteriors onto the 1D plane. To support
this point, we verify that shifts in the same direction appear
when analysing a gravity-only synthetic data vector with
the same wide baryon priors. We see no significant
improvement in the goodness-of-fit of our data when
employing HMcode (a χ2 of 236.8 vs our fiducial 237.7,
with 2 added parameters).
In addition to the tests described above, we also repeat

our fiducial analysis with the neutrino mass density
parameter Ωνh2 fixed. For this exercise, we set the sum
of the neutrino masses,

P
mν, to the lower limit obtained

by oscillation experiments, assuming the normal (non-
inverted) hierarchy, of 0.06 eV [187,188]. We maintain our
fiducial choice of 3 degenerate neutrino species [89]. The
neutrino mass parameter is not constrained by cosmic shear
alone, so the small upward shift of around ∼0.2σ we
observe in the 1D marginal S8 constraint shown in
Fig. 10 is again thought to be an effect of the projection
of the high-dimensional parameter space with a different
prior volume.

We show the 2D parameter constraints in the S8–Ωm
plane under the variations of assumptions in the baryonic
power spectrum and the neutrino mass density in Fig. 11.
We note that despite the small differences in marginalized
S8 constraints, these analysis variations are still fully
consistent with our fiducial analysis.

B. Intrinsic alignments

In this section we explore how plausible variations in our
IA modeling can propagate to cosmology. In addition to the
fiducial TATT model, we consider a number of alternatives,
which are detailed below (see also Fig. 10). The variations
cover a range of complexity scenarios, from the simplest
case of null IAs (i.e. all parameters fixed to zero), through
NLA and TATT to a version with added flexibility in
redshift.
In Fig. 8 we consider our baseline result (green),

alongside the equivalent using the two-parameter NLA
model (blue; [6,7]’s fiducial choice), and an even simpler
one-parameter version with no redshift dependence (dot-
dashed yellow; [5]’s fiducial choice). Although only at the
level of ∼0.5σ, we see a shift in S8 when switching between
NLA and TATT, which is roughly consistent with the
findings of Samuroff et al. [136] in DES Y1. This shift is
not accompanied by a large improvement in the χ2 per
degree of freedom, but there is some preference for the
simpler mode in terms of Bayesian evidence (see Sec. VI C
and Table III). It is also notable that the variants of NLA
with and without redshift variation give virtually identical
cosmology results, primarily because the extra η1 parameter
is poorly constrained, and relatively uncorrelated with S8.
We also to note briefly that the impact of switching IA
models also slightly rotates the best constrained direction
in parameter space, with α ¼ 0.576 for NLA and α ¼ 0.586
in the fiducial TATT, when one defines the lensing
amplitude as Σ8 ¼ σ8ðΩm=0.3Þα.
Given the negative a1 and hints of bimodality seen in

Fig. 8, we run a version of the Y3 cosmic shear analysis
with a restrictive prior a1 ¼ ½0; 5�.15 This results in almost
no change to the best-fit S8 (compare lines 1 and 6 in
Fig. 10), although it does tighten the error bar slightly by
restricting the posterior (row 6 of Fig. 10), which implies
that the fact that our fiducial results encompass a region of
negative IA space is not driving our cosmological con-
straints in a particular direction.
We also present a case with a flexible version of the NLA

model, shown in Fig. 10 (line 5, labeled “NLA, free a1 per
z-bin”). The basic idea here is to test how limiting our
assumption of power law redshift dependence is in this
context, since we have no first-principles reason to expect
IAs should obey this particular scaling. Interestingly,

FIG. 11. The marginal posterior distribution in the S8 × Ωm
plane for the model variations on the baryonic power spectrum
(HMcode with 2 free parameters) and neutrino mass density (fixed
at minimum mass). The results of our fiducial analysis is also
shown (green). We observe consistency between these cases and
our fiducial analysis, and do not interpret shifts as pointing to
insufficiency in the analysis (see text).

15Our baseline prior bounds a1 ¼ ½−5; 5� were designed to be
uninformative and avoid prior edge effects. It is, however,
reasonable to expect that a1 > 0, in the absence of systematics.
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adding flexibility via extra TATT parameters, and via the
ability to deviate from a power law redshift evolution, is
seen to push S8 in opposite directions relative to the basic
NLA (cf. lines 1, 4, and 5 in Fig. 10). While we find a shift
of around 1σ with respect to TATT (0.5σ with respect to
NLA), the per-bin NLA model is significantly disfavored.
The Bayesian evidence ratios strongly favor TATT and
NLA over the per-bin NLA model (with R ¼ 237� 60 and
202� 49 respectively), and in the latter model we addi-
tionally see a significantly worse χ2 (increased by about 10
with respect to TATTwhile the effective number of degrees
of freedom is decreased by 1).
Taken as a whole, the tests described above paint a

consistent picture. Apart from NLA per-bin, the IA
modifications we explored cause shifts no greater than
∼0.5σ in S8, even in the most extreme scenario where we
neglect IAs entirely. In NLA per bin, we find a shift of 1σ
with respect to our fiducial constraints, but also find that
this model is disfavored by evidence ratios and goodness-
of-fit tests. We therefore do not believe we that our IA
modeling is insufficient to describe the data and, through
the IA model selection described in Sec. VI C 2, actually
have evidence that it might be simplified in future analyses.
We do find a change in constraining power between NLA
and TATT, with NLA (at fiducial scale cuts) being
comparable to TATT at the ΛCDM -Optimized scale cuts.
This suggests that our uncertainty budget is dominated by
the lack of knowledge in modeling astrophysics on small
cosmological scales. This is verified by our companion
Amon et al. [72], Sec. XII.

VIII. COMPARISON WITH EXTERNAL DATA

After having verified that DES-only results are robust
with respect to changes in astrophysics modeling assump-
tions, we now seek to place our results in the context of the
wider field and to quantify tension with respect to subsets
of external data.

A. External datasets

We describe a number of external datasets (see Table IV),
to which we will compare our results. Where appropriate,
we recompute the cosmological posteriors in order to
facilitate a meaningful comparison. The marginalized S8

constraints from the external datasets that meaningfully
constrain this parameter alone are shown in the lower half
of Fig. 10. The datasets we consider in this paper are largely
common to those described in Dark Energy Survey
Collaboration [186], Dark Energy Survey Collaboration
[189], and Troxel et al. [7], with some more recent updates.
Among these, as described in Sec. I, the KiDS and HSC
surveys are Stage-III WL surveys like DES. The full set of
surveys we consider is

(i) KiDS-1000: The KiDS weak lensing data comprise
roughly 1000 square degrees and 21M galaxies
(neff ∼ 6.2=arcmin2), and are described in Giblin
et al. [62]. In their latest results papers, [5] present
cosmic shear analyses using three different statistics;
since they clearly designate their COSEBIs-based
results as their fiducial analysis, we compare with
these here. Note that we do not recompute the
posteriors, but rather compare with the published
results. In particular, one should be aware that our
choice of IA model, nonlinear power spectrum and
cosmological priors all differ from the fiducial
analysis of Asgari et al. [5].

(ii) HSC Y1: The first year HSC lensing data are drawn
from 137 square degrees, but go significantly deeper
than eitherKiDSorDES, reachingneff ∼ 22=arcmin2.
The data are described inMandelbaum et al. [61], and
are calibrated using image simulations [190].As in the
case of KiDS, we do not reanalyze the two-point data,
instead comparingwith thepublished results. Since, at
the time of writing, there is no reason to prefer one
over the other, we show both the real space analysis of
Hamana et al. [28] and the power spectrum analysis of
Hikage et al. [6] in Fig. 10. The differences between
the two are thought to be statistical, due to different
Fourier mode sensitivities. For the sake of clarity, we
choose to show the latter in the visual comparison
of Fig. 13.

(iii) eBOSS: We include spectroscopic baryon acoustic
oscillation (BAO) measurements from eBOSS [3].
The BAO likelihood is assumed to be independent of
DES, but we do recompute the posterior in our
choice of cosmological parameter space (i.e. sam-
pling As and Ωm, and with the sum of the neutrino
masses free).

TABLE IV. A summary of the external datasets used in this paper. More details can be found in Sec. VIII and the references listed.

Dataset Type Median Redshift Area (sq. deg) Source

DES Y3 WL 0.62 4143 This work
KiDS-1000 WL 0.54 777 Asgari et al. [5]
HSC Y1 WL 0.81 137 Hamana et al. [28], Hikage et al. [6]
eBOSS BAO 0.7 6813 Alam et al. [3]
Pantheon SNe 1.0 � � � Scolnic et al. [191]
Planck main CMB TT þ TEþ EEþ lowE 1090 Full-sky Planck Collaboration [183]
Planck lensing CMB lensing 2.0 Full-sky Planck Collaboration [192]
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(iv) Pantheon supernovae: We also include the lumi-
nosity distances from type Ia supernovae from the
Pantheon sample [191]; this dataset includes 279
type Ia supernovae from the PanSTARRS Medium
Deep Survey ð0.03 < z < 0.68Þ and samples from
SDSS, SNLS, and HST. The final Pantheon cata-
logue includes 1048 SNe, out to z ¼ 2.26.

(v) Planck 2018 Main: These data are the final
release from the Planck CMB experiment [183].
We incorporate the primary TT data on scales
30 < l < 2508, and also the joint temperature
and polarization measurements (TT þ TEþ EEþ
BB) at 2 < l < 30. As in previous analyses,
we recompute the CMB likelihood in our fiducial
parameter space, including neutrinos.

(vi) Planck 2018 lensing: We also consider CMB lensing
from the Planck survey [192] as a separate dataset.
These data probe an intermediate redshift z ∼ 2,
which is slightly higher than DES and somewhat
lower than CMB temperature and polarization.

B. Quantifying tension

Assuring that the data collected by two different experi-
ments have a quantified degree of agreement is crucial
when performing a joint probes analysis. Therefore, for
DES Y3, we have presented an thorough study on the
ability of different tension metrics to identify inconsisten-
cies among cosmological parameters measured by different
experiments. We used simulated data to compute the
predictions of different tension metrics belonging to two
classes: Evidence-based methods and parameter-space
methods. A robust way to quantify possible tensions is
by combining those two types of metrics, as they answer
somewhat different, but yet complementary, questions [86].
In DES, we utilize priors that are deliberately wide and

uninformative such that “DES-only” constraints can be
obtained. In this case, assessing tension utilizing the Bayes
ratio, a broadly used evidence-based tension metric, can
produce misleading results since it is largely dependent on
the prior volume as discussed in Handley and Lemos [193].
To avoid this problem, for our choice of an evidence-based
metric we compute the Bayesian suspiciousness [194]
instead, a method that corrects for the prior dependence.
Consider two independent datasets A and B. The

motivation behind suspiciousness is that the Bayes ratio
R can be divided into two parts: the first one captures the
prior dependence, i.e. the probability of the datasets
matching given the prior width, which is quantified by
the information ratio I:

log I ≡DA þDB −DAB; ð31Þ

where

DD ≡
Z

PD log

�
PD

Π

�
dθ; ð32Þ

is the Kullback–Leibler Divergence [195], that can be
understood as the amount of information that has been
gained going from the prior Π to the posterior P. The lower
index D denotes the dataset from which the posterior is
derived (A, B, or the joint data vector AB). The second part
is the so-called Bayesian suspiciousness S, which is the part
of the Bayes ratio left after subtracting the dependence on
the prior, leaving only on the actual differences between the
posteriors:

log S ¼ logR − log I: ð33Þ

All the quantities required to compute the
Suspiciousness metric are provided by a single nested
sampling chain, just as the ones required to compute the
Bayes ratio are, meaning the computational cost is the same
in both cases. The necessary tools are implemented in the
python package anesthetic16 [196].
In addition, we calculate a Monte Carlo estimate of the

probability of a parameter difference, set out in Raveri et al.
[197], as our parameter space-based method. It relies on the
calculation of the parameter difference probability density
PðΔθÞ which, in the case of two uncorrelated datasets, is
simply the convolution integral:

PðΔθÞ ¼
Z
Vp

PAðθÞPBðθ − ΔθÞdθ; ð34Þ

where Vp is the prior support and PA and PB are the two
posterior distributions of parameters. The probability of an
actual shift in parameter space is obtained from the density
of parameter shifts:

Δ ¼
Z
PðΔθÞ>Pð0Þ

PðΔθÞdΔθ; ð35Þ

which is the posterior mass above the contour of constant
probability for no shift, Δθ ¼ 0.
Usually we only have discrete representations of the

posterior samples and, since we are working with high
dimensional parameter spaces, the posterior samples cannot
be easily interpolated to a obtain a continuous function.
Therefore, the integral in Eq. (35) needs to be performed
using a Monte Carlo approach.
The idea is to compute the kernel density estimate (KDE)

probability thatΔθ ¼ 0 and the same at each of the samples
from the parameter difference posterior. Then, the estimate
of the integral in Eq. (35) is given by the number of
samples with nonzero KDE probability, divided by the total

16https://github.com/williamjameshandley/anesthetic.
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number of samples. These computations are done using the
tensiometer17 code.

1. Compatibility between low-z and high-z data

We now assess the consistency between high- and low-
redshift cosmological probes. As in Dark Energy Survey
Collaboration [73], we conclude that two datasets are
statistically consistent if the p-value implied by our tension
metrics is greater than 0.01. This same standard value was
utilized in our internal consistency tests in Amon et al. [72].
In order to quote tension metrics, we first recompute the
low-z (here defined as the combination BAOþ SNe) and
Planck 2018 posteriors with priors on cosmological param-
eters matched to those of DES Y3, as defined in Table I. In
addition to assessing tension relative to our fiducial Y3
analysis, we also explore whether switching to the ΛCDM -
Optimized scale cuts significantly changes our findings,
since the one-dimensional result in Fig. 10 can offer hints,
but not quantify the agreement between datasets.
Figure 12 shows the posteriors from DES as well as low-

z and Planck 2018 in ΛCDM. In the full parameter space,
for DES Y3 cosmic shear vs BAOþ SNe in ΛCDM we
find:

Suspiciousness : 0.5σ � 0.3σ ðDES vs Low-z ΛCDMÞ
Parameter shift : 0.4σ ðDES vs Low-z ΛCDMÞ;

which implies pð0.5σÞ ¼ 0.62 > 0.01, and we conclude
these datasets are consistent. This confirms more rigorously
what is seen qualitatively in Fig. 12.
We similarly quantify the compatibility between DES

Y3 cosmic shear and Planck 2018 in ΛCDM:

Suspiciousness∶ 2.3σ � 0.3σ ðDES vs Planck ΛCDMÞ
Parameter shift∶ 2.3σ ðDES vs Planck ΛCDMÞ;

with a p-value pð2.3σÞ ¼ 0.02 > 0.01. We thus find that,
according to our tension metrics, these datasets are con-
sistent. We additionally explore the consistency of DES Y3
cosmic shear with Planck 2018 in our ΛCDM -Optimized
setup and find:

Suspiciousness∶ 2.0σ � 0.4σ

ðDESoptim: vs Planck ΛCDMÞ
Parameter shift∶ 2.1σ ðDESoptim: vs Planck ΛCDMÞ;

which yields approximately pð2.0σÞ ¼ 0.05 > 0.01, again
implying that these datasets are consistent. That result can
be expected, at least qualitatively, by inspecting Figs. 10
and 12: while the constraint on S8 is improved in the

optimized analysis, there is also a small shift toward
Planck.

2. Comparing weak lensing surveys

We show our fiducial DES Y3 ΛCDM results (green
shaded), alongside those of a number of contemporary
weak lensing surveys in Fig. 13. Also shown (yellow) are
the equivalent constraints from most recent Planck CMB
data release (without lensing). Most notably, all the
published cosmic shear analyses (including earlier, less
constraining, results that are not shown here) favor lower S8
than Planck, to varying degrees of significance. Although
the cosmic shear surveys are independent, both in the sense
that there is limited overlap between the catalogues (see
Fig. 1), and that the measurement and analysis pipelines are
largely separate, it is remarkable that their S8 ×Ωm
posteriors overlap significantly, especially given that these
weak lensing analyses are carried out blind.
That said, the naive comparison of the surveys is

complicated by the fact that there are significant differences
in the analysis choices underlying the published results, and
unifying them becomes a crucial task [184]. Though it is
quite possible to compute the metrics discussed in the
previous section, interpreting them would be complicated,
as it would be difficult to determine if any apparent tension

FIG. 12. DES Y3 and external data constraints from low and
high redshift probes in ΛCDM. We present our fiducial and
ΛCDM optimized constraints (green and black-dashed) in com-
parison with Planck 2018 (TTþ EEþ TEþ lowE, no lensing;
yellow) and the combination of BAO and type Ia SNe (SDSS
BOSS and Pantheon respectively; blue). In all cases we show
both the 68% and 95% confidence limits. We find no evidence for
statistical inconsistency between DES Y3 cosmic shear and either
external dataset.

17https://github.com/mraveri/tensiometer.
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were real, or due to differences in priors (see the discussion
in [86]). A proper quantitative comparison would require
matching priors and other analysis choices, and would
ideally involve input from the different collaborations; such
an exercise would be in line with the recommendations of
[184] and is left for future work.
We can, however, compare our findings with the

tension analyses that the various collaborations choose to
present. For example, in DES Y1 cosmic shear the
discrepancy relative to Planck 2018 was assessed to be
at the level of 1.0σ and 0.5� 0.3σ using the parameter shift
and Suspiciousness metrics respectively [86]. These num-
bers can be compared directly with our findings in
Sec. VIII B 1. We see that the discrepancy between cosmic
shear and Planck 2018 has increased substantially in DES
Y3 in comparison with DES Y1, from 1.0σ to 2.3σ. The
latter number is, coincidentally, the same difference found
in the comparison between Planck and the 3 × 2pt analysis
of DES Y1 (including galaxy clustering and galaxy-galaxy
lensing).
The KiDS-1000 cosmic shear analysis of Asgari et al. [5]

opted to quantify their agreement with Planck using the
Bayes ratio. They find “substantial” evidence for disagree-
ment, with the caveat that the performance of this metric is
known to be prior dependent. Though they also compute a
Suspiciousness, they do not quote an interpretable value in
terms of σ, due to difficulties in computing effective
dimensionalities (see their Appendix B3). The approach
of HSC differs slightly between their two published

analyses. [28] (their Sec. 6.6) rely on a comparison of
projected contours, reporting no tension due to the apparent
overlap in the σ8 ×Ωm plane. On the other hand, Hikage
et al. [6] employ both the Bayes ratio and also differences
in the log-likelihood at the MAP point in parameter space
(see their Sec. 6.3 and [185]). They report no evidence for
inconsistency based on these metrics.
In the right-hand panel of Fig. 13 we also show the IA

model constraints from the various surveys. Although they
are roughly consistent (to within ∼1σ), it is worth being
careful here. In all cases but KiDS-1000, the IA model has
more flexibility than the one amplitude (an additional
redshift scaling in HSC and DES Y1, and the extra
TATT parameters in Y3), which means, for a given a1,
the predicted IA signal is not necessarily identical between
the surveys. It is also true that, unlike cosmological
parameters, IAs are expected to be dependent on both
the galaxy selection and the shape measurement method.
Differences, while interesting from the modeling perspec-
tive, are not necessarily a cause for concern.

IX. CONCLUSIONS

This paper and its companion, Amon et al. [72], present
together the cosmological constraints from cosmic shear
with over ∼100 million galaxies from Dark Energy Survey
Year 3 (DES Y3) shape catalogs, which cover 4143 square
degrees. We model the cosmic shear signal in ΛCDM and
constrain the lensing amplitude with 3% precision, finding

FIG. 13. Posterior constraints on cosmology (left panel) and intrinsic alignment parameters (right panel) from contemporary weak
lensing surveys. With the exception of Planck 2018, which is reanalyzed with DES Y3 priors, the weak lensing posterior data above are
plotted as published by each collaboration, therefore a direct, quantitative comparison is complicated due to differing parameter priors,
modeling and calibration choices. An overall qualitative agreement is seen in both panels, within approximately 1σ, with lensing surveys
predicting similarly low S8, and consistent a1 amplitude.
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S8 ¼ 0.759þ0.023
−0.025 . Our best constraint on ΛCDM is of

S8 ¼ 0.772þ0.018
−0.017 , at 2% precision, when optimizing the

angular scales while still maintaining biases under control.
Our results qualitatively agree well with previous lensing
analyses based on the KiDS-1000, DES Y1 and HSC
datasets, all of which favor lower S8 than the most recent
CMB measurements. Using quantitative tension metrics
based on the full parameter space, we report a 2.3σ
difference between our DES Y3 results and Planck 2018
(a p-value of 0.02), and we consider these datasets to be
statistically consistent. At our present constraining power,
we do not report a meaningful constraint on the equation-
of-state parameter of dark energy in wCDM. That is, the
cosmic shear likelihood does not significantly add infor-
mation about the parameter w beyond its prior.
Throughout this paper, we have focused on the aspects of

the DES Y3 cosmic shear analysis relating to astrophysical
modeling. The overarching philosophy that guided this
work and its conclusions can be summarized as follows.
First, in a blinded fashion, we test our modeling assump-
tions on synthetic data obtained from theory pipelines and
N-body mocks, in order to validate our fiducial analysis
choices. We then obtain cosmology constraints from shear
data that are verified to be internally consistent and
calibrated to high confidence by our companion paper
[72]. Finally, we proceed to relax our fiducial theory
assumptions and vary model parametrizations, finding that
the results to be robust to these variations, and then
compare our constraints with those of external probes.
The main conclusions of this paper are

(i) Informed by previous IA studies in DES Y1 data, we
account for IAs with a 5-parameter model that
includes tidal alignments and tidal torquing (TATT).
We present tests of this modeling assumption on
analytically generated data as well as realistic MICE
(N-body) simulations, and find that TATT is able to
capture complex IA signals, as well as that of
simpler models such as NLA (Fig. 6);

(ii) We select angular scales conservatively to mitigate
the effect of baryonic physics, the dominant small-
scale systematic for this analysis. We show that our
scale cuts suppress baryonic contamination as in-
ferred from hydrodynamic simulations with varying
levels of feedback strength, and utilize a gravity-
only model for the matter power spectrum.We verify
in synthetic data that residual biases due to baryons
are well below 0.3σ in the Ωm × S8 plane, and that
our selected scales are insensitive to uncertainties in
the nonlinear power spectrum and in higher order
shear contributions (Fig. 5);

(iii) The tension metrics we use in the full parameter
space yield a 2.3σ discrepancy with respect to
Planck (2018), with the leading contribution to
the tension being our lower S8. External probes at
low-z (BAOþ SNe), which are sensitive to Ωm, are

within 0.5σ under the same metrics. We regard both
these probes as statistically consistent with DES
cosmic shear. We also find qualitative agreement
between our data and external lensing results from
HSC Y1 and KiDS-1000, all of which yield lower
nominal S8 values in comparison with Planck 2018
(Figs. 7, 12, and left panel of 13);

(iv) We demonstrate that our posteriors on IA and
cosmological parameters are consistent within 1σ
as we vary the parametrization of intrinsic align-
ments by simplifying our fiducial model from TATT
to NLAwith free/fixed redshift dependence. This is
also true when we allow for free ai1 amplitudes on
each redshift bin i. We demonstrate that our poste-
riors on cosmological parameters are stable when
inference is carried out at fixed neutrino mass and
with free baryonic feedback parameters (Figs. 9, 10,
and 11);

(v) We perform a detailed Bayesian evidence-based
model selection for intrinsic alignments, finding
that our data shows a weak preference for simpler
(and better constrained) parametrizations. We addi-
tionally find that the best-fit IA amplitudes in DES
Y3 are smaller than those in Y1. However, the two
are consistent with each other, and also with other
lensing surveys, although quantitative statements are
challenging without further studies of e.g. sample
selections and model differences. In combination
with the fact that posteriors on S8 ×Ωm from simpler
IA models are consistent with our fiducial choice
(TATT), these findings point to less complex para-
metrizations, such as NLA, being a sufficient and
unbiased description of our data (Fig. 8, Table III,
and right panel of Fig. 13).

Additionally, we share a summary of the main con-
clusions of our companion paper [72], demonstrated with
the same Y3 cosmic shear analysis, and point the reader to
that paper for details:

(i) The analysis is shown to be robust to the choice
of redshift calibration sample, either photometric of
spectroscopic, methodology and the modeling of
redshift uncertainty, within ∼0.5σ.

(ii) We model the impact of blending using state-of-the-
art image simulations and show that our posteriors
are stable to this correction, within 0.5σ.

(iii) The analysis passes all internal consistency tests,
finding that the cosmology is stable across redshifts,
angular scales and measurement statistics.

(iv) The impact of additive shear systematics, such as
PSF contamination and B-modes is assessed and
found to be negligible for the analysis.

(v) We investigate the limiting factors of the cosmic
shear constraints and find observational systematics
are subdominant compared to systematics due to
modeling astrophysical effects.
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The results presented in this study show that cosmic shear
has reached the requirements of percent level precision:
every source of systematic uncertainty must be controlled to
better than a percent of the signal, since our statistical
uncertainty on the amplitude parameter S8 is three percent.
When the first detections of cosmic shear were published in
2000, it was far from a given that this level of precision was
achievable. With the full DES survey awaiting analysis, and
the much larger surveys from Euclid and the Rubin
Observatory’s LSST starting in a few years, it is interesting
to consider prospects for further qualitative advances.
On the theoretical side, we are limited by our ability to

describe the astrophysics of small scales, in particular
baryons and IA. Baryonic physics is the driver of our
scale cuts, and we will need to rely on advances in
hydrodynamic simulations, constrained by complementary
observations such as Sunyaev-Zel’dovich (SZ) maps,
otherwise the necessary cuts and/or marginalization will
cause more information to be discarded. Conversely, we
have found that intrinsic alignments are likely to contribute
less than the most conservative forecasts, but more studies
are required to extended our findings to arbitrary galaxy
samples. Parallel advances in shear estimation and calibra-
tion and the photo–zs of source galaxies are required to
keep pace with statistical errors. Beyond cosmic shear, a
suite of statistical measures that capture the non-Gaussian
information in the shear field have been developed, such as
peak statistics and three-point correlations. These will add
complementary information and also serve as cross-checks
on the robustness of the signal. We can look forward to new
cosmological tests with the application of these approaches
to DES and future surveys.
Finally, we reiterate that, while the assumption of

ΛCDM as the ultimate end-to-end model connecting the
early- and late- Universe has withstood another test, our
result should be understood within a broader context. It is
still an open puzzle that modern weak lensing surveys,
independently and in blind analyses, find a lower lensing
amplitude than predicted by the CMB, and the difference
between DES cosmic shear itself with respect to Planck has
increased from 1.0σ in DES Y1 to 2.3σ in Y3. More effort
is required to quantify the agreement between lensing
studies, especially toward unifying and homogenizing their
analyses and exploiting their complementarities.
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APPENDIX A: CONSTRUCTION OF THE MICE
SOURCE CATALOG AND RESULTS

In this section, we discuss the construction of a mock
weak lensing source catalog with the MICE N-body
simulation. Significantly, in addition to cosmological shear,
these mock catalogs contain a realistic IA component,
making them a good testing ground for our modeling; this
is the primary motivation for using them here, as discussed
in Sec. V B. The implementation of the IA signal into
MICE is described in far more detail in Hoffmann et al.
[175], and is summarized below.
Each MICE galaxy has a (projected) shape assigned to it:

γ ¼ γG þ γI þ ϵ: ðA1Þ

The cosmological part of this is obtained via ray tracing
(see [166]); γI is the coherent intrinsic component, which is
generated via semi-analytic modeling (see below and
[175]), and ϵ is random Gaussian shape noise.
For the purposes of our test, it is desirable that the overall

constraining power of the mock catalog (in terms of the
figure-of-merit in the S8 ×Ωm plane) resembles that of the
fiducial source catalog; to that end, we match the con-
straining power of Y3 cosmic shear by adding a shape noise
component to the covariance matrix of the hypothetical
MICE survey, generated with CosmoLike. This scatter is
chosen such that the uncertainty in the shape noise
dominated regime is equivalent between MICE and
METACAL: ΔCκκ

METACALðlÞ ¼ ΔCκκ
MICEðlÞ, with

ΔCκκðlÞ ∼ 1ffiffiffiffiffiffiffiffi
fsky

p
�
σ2e
n̄

�
; ðA2Þ

where fsky is the observed fraction of the total sky area, n̄ is
the (effective) galaxy number density and σ2e is the variance
of the ellipticities. With n̄ and fsky fixed in both catalogs
(our MICE catalog has approximately 130M galaxies over
an area of 5191 deg2 while METACAL has 100 M galaxies
spanning an area of 4143 deg2), and σe ¼ 0.261 fixed in
METACAL, we adjust σe;MICE so that the equality is reached,

and verify that we achieve a comparable constraining
power as DES Y3 in the 2D S8 ×Ωm. The IA contribution
to the MICE shears (γI) has, additionally, an irreducible
noise coming from a randomization of galaxy orientations.
This randomization is a component of the IA modeling and
has been tuned to match observed IA correlations from the
BOSS LOWZ sample [181].
It is also desirable that the source galaxy photometric

properties in the mock also resemble those of galaxies in the
fiducial DES Y3 catalog, since IAs can depend on galaxy
color and luminosity. In summary, we verify that the
distribution of riz magnitudes and color-magnitude distri-
butions are similar between MICE and METACALIBRATION.
It would also be beneficial if the redshift distributions nðzÞ
on the mock catalog were closely matched to what is found
in real data (Fig. 3). Since the implementation in MICE of
the SOMPZ framework utilized in DES Y3 [55,79] is
beyond the scope of this work, and since the goal of this
model test should be agnostic to the exact shape of the
redshift distributions, we utilize directional neighborhood
fitting (DNF) photo-zs [202] for our mock nðzÞ s, as these
are made available by default with the MICE data releases.
In general, we find that DNF redshift distributions are
narrower and less overlapping across bins than the fiducial
DES Y3nðzÞs.
With the mock catalog constructed, we then apply the

same pipelines that were used for measuring the tomo-
graphic cosmic shear data vector ξij�ðθÞ and inferring
cosmological parameters. Where possible we mirror the
model choices and nuisance parameter marginalization
used in the analysis of the real data.
We measure 2 sets of shear correlation functions from the

mock: a “MICE Baseline” data vector estimated from the
IA-free GG signal (i.e. using only the γG component of
Eq. (A1), and a “MICE IA” data vector which includes the
full GGþ GIþ II signal, as well shape noise added at the
catalog level. Since the former captures the cosmological
signal (plus cosmic variance), it provides a useful fiducial
case, relative to which we can gauge biases. The input
cosmology is known for MICE, however the IA signal is,
by construction, not exactly mapped into a set of NLA or
TATT parameters. Thus, for a single realization of the
mock, our expectations are (1) that the constraints on
the MICE Baseline GG-only vector are consistent with the
input cosmology while at the same time the IA parameter
constraints are consistent with zero; (2) that cosmology
constraints on the full MICE IA data vector are not
excessively biased with respect to the baseline constraints.
Both our expectations are fulfilled, with MICE IA offset

by ∼0.6σ from the peak of baseline. Our results are shown
in Fig. 14. Although this shift is larger than the 0.3σ
tolerance we applied to previous tests on analytic data, it is
worth bearing in mind that the nature of the test discussed
here is slightly different. That is, we only have one
realization of the noise in the IA vector (both cosmic
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variance and shape noise). While this test is valuable, in the
sense that large shifts would be a sign of significant
problems in the fidelity of our model, offsets within
∼1–2σ are entirely consistent with noise.
We also run the inference pipeline on the full IA data

vector while fixing the cosmological parameters at the true
MICE input to isolate the IA signal. Those are the
“reduced” parameter space curves in Fig. 14. While
constraints obtained this way are artificially tight, the
exercise shows that the IA parameters measured in the
reduced case are consistent within 1σ with parameters
obtained while varying cosmology. Additionally, we do
find a marginal preference for a negative a1 parameter in
both cases that involve nonzero IA parameters. Although
this is likely not a physical effect, and nor in this case can it
be the result of unmodeled photo-z error, it is quite
conceivable that it is simply a result of a small but positive
“true” IA signal, combined with shape noise.
This test on MICE is aimed at verifying that our

fiducial model can recover unbiased cosmological
constraints from a data vector that includes intrinsic align-
ments and that is not generated by an analytic pipeline.
While we do obtain reasonable results and the present test
has the rare benefit of including a realistic, simulated
(N–body with semianalytic model) IA signal, it is

statistically weaker than a more complete validation of
DES pipelines on simulations [88], mainly due to the
lack of independent realizations. A complete analysis on
a relatively large number of MICE mocks is left for
future work.

APPENDIX B: ROBUSTNESS OF IA TO
UNMODELED REDSHIFT ERROR

In this Appendix we set out in more detail the tests on
analytic data introduced in Sec. VA 3. These tests, which
are based on noiseless analytic data, are designed to test the
specific question of whether our choice of IA model
behaves well in the presence of realistic errors in the
redshift distributions. We focus here on synthetic data
vectors which do not contain real data complexity, in which
case a thorough testing of redshift calibration is more
complicated and performed by our companion [72]. We use
the ensemble of 6000 SOMPZ realizations of nðzÞ’s,
described in Myles et al. [79]; for each sample of the
Y3 redshift distributions, we compute a simulated cosmic
shear data vector ξsample

� ðθÞ at a fixed set of input cosmo-
logical parameters. Using the data covariance, we can then
calculate the Δχ2 between ξsample

� ðθÞ and a similarly
generated cosmic shear data vector, but with the fiducial
(mean) nðzÞ as input, ξmean

� ðθÞ. We find that the distribution
of Δχ2 obtained for the 6000 samples peaks close to zero

FIG. 14. MICE posteriors: The baseline case (purple) includes
only the GG part of the signal (no IAs) and IA parameters are
consistent with zero. The contours labelled “with IAs” (blue,
green, pink) includes GGþ GIþ II, with the IA model indicated
in parentheses. Note that two IA redshift power law indices are
included in the fits, as per the fiducial Y3 model; they are not
shown here as they are only very weakly constrained, and the
contours are uninformative. Dashed pink lines are the input
MICE cosmology.

FIG. 15. Analysis of synthetic data generated with the inclusion
of unmodeled redshift errors. The purple contour shows the
baseline posterior, obtained by analysing a simulated TATT data
vector with the correct nðzÞ; the three other colors show redshift
error scenarios of varying extremity. In each case the difference in
χ2 induced by the redshift error, at the input point in parameter
space, is indicated in the legend.
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(Δχ2 < 1.0, corresponding to small perturbations of the
data vector) and has a long tail out to more extreme
cases (Δχ2 ∼ 50.0). Given our finite computing resources,
we do not run nested sampling chains on all of the 6000
scenarios, but rather choose three of increasing severity,

corresponding to the 60th, 95th, and 99th percentiles of the
pðΔχ2Þ distribution.
We next translate these Δχ2 errors into cosmological

biases by analysing the three ξsample
� ðθÞ vectors with

our fiducial setup. Although that setup includes redshift

FIG. 16. The best fitting IA predictions, based on NLA and TATT analyses. In the two panels we show the fractional IA contributions
relative to the cosmological signal (top), and the absolute contributions (bottom). Both IA components, GI and II, are plotted separately
(blue and light purple). As before, shaded regions indicate scales discarded from the analyses.
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nuisance parameters Δzi, it cannot explicitly account for
perturbations in the nðzÞ shape that do not map well into the
first moment of the nðzÞ distribution. More extensive
testing of this is presented in Amon et al. [72]; Cordero
et al. [82].
The results of this exercise are shown in Fig. 15. Each of

the unfilled contours represents a different scenario of
redshift error, and can be compared with the solid purple
(which has no redshift error). In this limited testing scenario

with synthetic data we see no large biases in the IA model
parameters or S8, which are recovered correctly, and no
hints that the TATT model parameters are absorbing the
unmodeled error.

APPENDIX C: COMPARING NLA AND
TATT IN DES Y3

In this appendix we explore in more detail the differences
between our fiducial IA model for Y3 (TATT), and the

FIG. 17. Posterior distributions (purple solid) and priors (blue dashed) of our analysis. We intentionally leave out hard-boundary
corrections on the distributions above for ease of visualization. Our 1D marginalized priors are flat in the cosmological parameters
described in Table I, but sampling and 1-dimensional marginalization can make them look noisy and nonuniform.
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more commonly used NLA model. As discussed in
Sec. IV D 2, TATT is a physically motivated model con-
taining NLA, such that in some limit (a2; bTA → 0), the two
are the same. Among various other permutations, we fit
both the two-parameter NLA model and the five-parameter
TATT model to the Y3 cosmic shear data. Using the more
complex IA model results in a slight widening of the
contours, as can be seen in Fig. 8, and also a rotation in the
direction of the σ8–Ωm degeneracy. These two effects
combine to produce a ∼17% difference in the projected
error bar on S8 between the two models. When considering
the 2D figure of merit in the S8–Ωm plane, the difference
is ∼25%.
In addition to the difference in constraining power,

NLA and TATT result in qualitatively different predic-
tions for the IA signal. We illustrate this in Fig. 16, which
shows the theory IA contributions, generated using the
respective best fitting IA parameters from the two chains.
Both the absolute signal, and the contribution relative to
the cosmological shear (GG) are included in the two
panels. Although the choice of model does not change
the conclusion that IAs are subdominant in all bins (at the
level of a few percent), the shape and sign of the IA
correlations do differ somewhat. Strikingly, TATT
predicts a much stronger II signal than NLA, which is
largely driven by the tidal torque (a2) part of the model. It
is also worth remarking here that although they look
different, neither of these IA scenarios has been con-
vincingly ruled out by direct measurements. That is, if
one generates projected intrinsic alignment correlations
(see e.g. [203], Sec. III.2 for the full definition) wgþ and
wþþ predictions, using the IA power spectra from these
fits, the results are within the range allowed by measure-
ments on faint blue and red galaxies at low redshift from
SDSS [203,204].

APPENDIX D: FULL POSTERIOR CONSTRAINTS

We show a set of 2D projections of our cosmological and
IA parameter posteriors in Fig. 17, along with their priors.
We note that σ8 and S8 are derived parameters which we do
not sample over, so projections make their apparent priors
nonuniform. Many of the parameters in our analysis are
either prior dominated, or not of physical interest, and so
are not shown in the main part of the paper. They are
included here for completeness.

APPENDIX E: CHANGES AFTER UNBLINDING

Three changes to our analysis happened after unblinding,
neither of them affecting significantly the DES Y3 cosmic
shear cosmological constraints, particularly S8. The first is a
planned modification to the covariance matrix: after the
tests described in Sec. V succeed and cosmology con-
straints are obtained, the analytic covariance matrix is
recomputed at the best-fit (maximum posterior) parameters
of the full 3 × 2pt data, and our cosmological constraints
are updated with new nested sampling chains.
The second change involves the DES Y3 lens sample,

which only enters the cosmic shear data via lensing ratios
(Sec. IV F). We substitute the original redMaGiC sample by
the magnitude-limited MagLim sample. We point the reader
to Dark Energy Survey Collaboration [73] for further
details and motivation for this change.
The third change is decision for presenting the

ΛCDM -optimized scale cuts in cosmic shear as one of
the main DES Y3 results. While fundamentally the opti-
mized scale cuts also lead to robust <0.3σ shifts in our
simulated analysis and therefore could have been a rea-
sonable pre-unblinding choice on a ξ�-only analysis, this
was only decided after unblinding. We report that here for
transparency.
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