14,873 research outputs found

    Prospects and status of quark mass renormalization in three-flavour QCD

    Full text link
    We present the current status of a revised strategy to compute the running of renormalized quark masses in QCD with three flavours of massless O(a) improved Wilson quarks. The strategy employed uses the standard finite-size scaling method in the Schr\"odinger functional and accommodates for the non-perturbative scheme-switch which becomes necessary at intermediate renormalized couplings as discussed in [arXiv:1411.7648].Comment: 7 pages, 3 figures, 1 table; Proceedings of the 33rd International Symposium on Lattice Field Theory, 14-18 July 2015, Kobe, Japa

    Raman-scattering study of the phonon dispersion in twisted bi-layer graphene

    Full text link
    Bi-layer graphene with a twist angle \theta\ between the layers generates a superlattice structure known as Moir\'{e} pattern. This superlattice provides a \theta-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bi-layer graphene (tBLG). The effect reported here is different from the broadly studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO' phonons) are observed.Comment: 18 pages, 4 figures, research articl

    Metallochaperones Are Needed for Mycobacterium tuberculosis and Escherichia coli Nicotinamidase-Pyrazinamidase Activity.

    Get PDF
    Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 μM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 μM) and ZnuA (1 μM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat

    Finding critical points using improved scaling Ansaetze

    Full text link
    Analyzing in detail the first corrections to the scaling hypothesis, we develop accelerated methods for the determination of critical points from finite size data. The output of these procedures are sequences of pseudo-critical points which rapidly converge towards the true critical points. In fact more rapidly than previously existing methods like the Phenomenological Renormalization Group approach. Our methods are valid in any spatial dimensionality and both for quantum or classical statistical systems. Having at disposal fast converging sequences, allows to draw conclusions on the basis of shorter system sizes, and can be extremely important in particularly hard cases like two-dimensional quantum systems with frustrations or when the sign problem occurs. We test the effectiveness of our methods both analytically on the basis of the one-dimensional XY model, and numerically at phase transitions occurring in non integrable spin models. In particular, we show how a new Homogeneity Condition Method is able to locate the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state quantities on relatively small systems.Comment: 16 pages, 4 figures. New version including more general Ansaetze basically applicable to all case

    Automated theorem proving for the systematic analysis of an infusion pump

    Get PDF
    This paper describes the use of an automated theorem prover to analyse properties of interactive behaviour. It offers an alternative to model checking for the analysis of interactive systems. There are situations, for example when demonstrating safety, in which alternative complementary analyses provide assurance to the regulator. The rigour and detail offered by theorem proving makes it possible to explore features of the design of the interactive system, as modelled, beyond those that would be revealed using model checking. Theorem proving can also speed up proof in some circumstances. The paper illustrates how a theory generated as a basis for theorem proving (using PVS) was developed systematically from a MAL model used to model check the same properties. It also shows how the CTL properties used to check the original model can be translated into theorems.CHI+MED, EPSRC research grant EP/G059063/

    Quantum criticality as a resource for quantum estimation

    Full text link
    We address quantum critical systems as a resource in quantum estimation and derive the ultimate quantum limits to the precision of any estimator of the coupling parameters. In particular, if L denotes the size of a system and \lambda is the relevant coupling parameters driving a quantum phase transition, we show that a precision improvement of order 1/L may be achieved in the estimation of \lambda at the critical point compared to the non-critical case. We show that analogue results hold for temperature estimation in classical phase transitions. Results are illustrated by means of a specific example involving a fermion tight-binding model with pair creation (BCS model).Comment: 7 pages. Revised and extended version. Gained one author and a specific exampl

    An internet-based treatment for flying phobia using 360° images: A feasibility pilot study

    Get PDF
    Background: More research is needed in the field of Internet-delivered Cognitive Behavioral Treatments (ICBTs) for specific phobia in order to understand which characteristics are important in online exposure scenarios. The aim of the present work was to conduct a feasibility pilot study to explore participants'' opinions, preferences, and acceptability ratings of two types of images (still images vs 360° navigable images) in an ICBT for Flying Phobia (FP). A secondary aim was to test the potential effectiveness of the two active treatment arms compared to a waiting list control group. An exploratory aim was to compare the role of navigable images vs. still images in the level of sense of presence and reality judgment and explore their possible mediation in treatment effectiveness. Methods: Participants were randomly allocated to three conditions: NO-FEAR Airlines with still images (n = 26), NO-FEAR Airlines with still and navigable images (n = 26), and a waiting list group (n = 26). Primary outcome measures were participants'' opinions, preferences, satisfaction, and acceptance regarding the images used in the exposure scenarios. Secondary outcome measures included FP symptomatology outcomes and measures of sense of presence and reality judgment. Results: Participants in the study preferred navigable images over still images before and after treatment (over 84%), and they considered them more effective and logical for the treatment of their problem. However, adherence in the experimental conditions was low (42.3% dropout rate), and more participants withdrew from the group that included navigable images compared to the group that only included still images (14 vs. 8), with no statistical differences in attrition between the two conditions. NO-FEAR Airlines proved to be effective in reducing FP symptomatology compared to the control group, with large between-group effect sizes on all FP measures (ranging from 0.76 to 2.79). No significant mediation effect was found for sense of presence or reality judgment in treatment effectiveness. Discussion: The results of the current study suggest that participants prefer more immersive images in exposure scenarios, providing data that can help to design useful exposure scenarios to treat specific phobias in the future. They also provide evidence supporting the effectiveness of an ICBT for FP. Trial registration: Registered at Clinicaltrials.gov (NCT03900559) on April 9, 2019. Retrospectively registered. © 202
    • …
    corecore