11,168 research outputs found
Critical phenomena of thick branes in warped spacetimes
We have investigated the effects of a generic bulk first-order phase
transition on thick Minkowski branes in warped geometries. As occurs in
Euclidean space, when the system is brought near the phase transition an
interface separating two ordered phases splits into two interfaces with a
disordered phase in between. A remarkable and distinctive feature is that the
critical temperature of the phase transition is lowered due to pure geometrical
effects. We have studied a variety of critical exponents and the evolution of
the transverse-traceless sector of the metric fluctuations.Comment: revtex4, 4 pages, 4 figures, some comments added, typos corrected,
published in PR
Levantamento de nematĂłides fitoparasitas associados a pomares de videira em declĂnio da serra gaĂşcha.
bitstream/item/30555/1/boletim-110.pd
Enraizamento de estacas de mirtilo provenientes de ramos lenhosos.
bitstream/item/31070/1/Comunicado-133.pd
Vacuum Energy Density Fluctuations in Minkowski and Casimir States via Smeared Quantum Fields and Point Separation
We present calculations of the variance of fluctuations and of the mean of
the energy momentum tensor of a massless scalar field for the Minkowski and
Casimir vacua as a function of an intrinsic scale defined by a smeared field or
by point separation. We point out that contrary to prior claims, the ratio of
variance to mean-squared being of the order unity is not necessarily a good
criterion for measuring the invalidity of semiclassical gravity. For the
Casimir topology we obtain expressions for the variance to mean-squared ratio
as a function of the intrinsic scale (defined by a smeared field) compared to
the extrinsic scale (defined by the separation of the plates, or the
periodicity of space). Our results make it possible to identify the spatial
extent where negative energy density prevails which could be useful for
studying quantum field effects in worm holes and baby universe, and for
examining the design feasibility of real-life `time-machines'.
For the Minkowski vacuum we find that the ratio of the variance to the
mean-squared, calculated from the coincidence limit, is identical to the value
of the Casimir case at the same limit for spatial point separation while
identical to the value of a hot flat space result with a temporal
point-separation. We analyze the origin of divergences in the fluctuations of
the energy density and discuss choices in formulating a procedure for their
removal, thus raising new questions into the uniqueness and even the very
meaning of regularization of the energy momentum tensor for quantum fields in
curved or even flat spacetimes when spacetime is viewed as having an extended
structure.Comment: 41 pages, 2 figure
Stochastic semiclassical fluctuations in Minkowski spacetime
The semiclassical Einstein-Langevin equations which describe the dynamics of
stochastic perturbations of the metric induced by quantum stress-energy
fluctuations of matter fields in a given state are considered on the background
of the ground state of semiclassical gravity, namely, Minkowski spacetime and a
scalar field in its vacuum state. The relevant equations are explicitly derived
for massless and massive fields arbitrarily coupled to the curvature. In doing
so, some semiclassical results, such as the expectation value of the
stress-energy tensor to linear order in the metric perturbations and particle
creation effects, are obtained. We then solve the equations and compute the
two-point correlation functions for the linearized Einstein tensor and for the
metric perturbations. In the conformal field case, explicit results are
obtained. These results hint that gravitational fluctuations in stochastic
semiclassical gravity have a ``non-perturbative'' behavior in some
characteristic correlation lengths.Comment: 28 pages, RevTeX, no figure
Transport and Boundary Scattering in Confined Geometries: Analytical Results
We utilize a geometric argument to determine the effects of boundary
scattering on the carrier mean-free path in samples of various cross sections.
Analytic expressions for samples with rectangular and circular cross sections
are obtained. We also outline a method for incorporating these results into
calculations of the thermal conductivity.Comment: 35 pages, Late
Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes
The noise kernel is the vacuum expectation value of the (operator-valued)
stress-energy bi-tensor which describes the fluctuations of a quantum field in
curved spacetimes. It plays the role in stochastic semiclassical gravity based
on the Einstein-Langevin equation similar to the expectation value of the
stress-energy tensor in semiclassical gravity based on the semiclassical
Einstein equation. According to the stochastic gravity program, this two point
function (and by extension the higher order correlations in a hierarchy) of the
stress energy tensor possesses precious statistical mechanical information of
quantum fields in curved spacetime and, by the self-consistency required of
Einstein's equation, provides a probe into the coherence properties of the
gravity sector (as measured by the higher order correlation functions of
gravitons) and the quantum nature of spacetime. It reflects the low and medium
energy (referring to Planck energy as high energy) behavior of any viable
theory of quantum gravity, including string theory. It is also useful for
calculating quantum fluctuations of fields in modern theories of structure
formation and for backreaction problems in cosmological and black holes
spacetimes.
We discuss the properties of this bi-tensor with the method of
point-separation, and derive a regularized expression of the noise-kernel for a
scalar field in general curved spacetimes. One collorary of our finding is that
for a massless conformal field the trace of the noise kernel identically
vanishes. We outline how the general framework and results derived here can be
used for the calculation of noise kernels for Robertson-Walker and
Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR
Anomalous Higgs Couplings
We review the effects of new effective interactions on the Higgs boson
phenomenology. New physics in the electroweak bosonic sector is expected to
induce additional interactions between the Higgs doublet field and the
electroweak gauge bosons leading to anomalous Higgs couplings as well as to
anomalous gauge-boson self-interactions. Using a linearly realized invariant effective Lagrangian to describe the bosonic sector of
the Standard Model, we review the effects of the new effective interactions on
the Higgs boson production rates and decay modes. We summarize the results from
searches for the new Higgs signatures induced by the anomalous interactions in
order to constrain the scale of new physics in particular at CERN LEP and
Fermilab Te vatron colliders.Comment: 35 pages, latex using epsfig.sty psfig.sty and axodraw.sty, 16
postscript figure
- …