18 research outputs found

    ACE as a Mechanosensor to Shear Stress Influences the Control of Its Own Regulation via Phosphorylation of Cytoplasmic Ser1270

    Get PDF
    Objectives: We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser(1270) are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results: Western blotting analysis showed that SS (18 h, 15 dyn/cm(2)) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra-or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser(1270) compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions: ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser(1270), consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser(1270).Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[01/00009-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[03/14115-2]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/52053-7]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)[480120/2007-2

    Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease

    No full text
    Recent studies have identified the genetic underpinnings of a growing number of diseases through targeted exome sequencing. However, this strategy ignores the large component of the genome that does not code for proteins, but is nonetheless biologically functional. To address the possible involvement of regulatory variation in congenital heart diseases (CHDs), we searched for regulatory mutations impacting the activity of TBX5, a dosage-dependent transcription factor with well-defined roles in the heart and limb development that has been associated with the HoltOram syndrome (hearthand syndrome), a condition that affects 1/100 000 newborns. Using a combination of genomics, bioinformatics and mouse genetic engineering, we scanned approximate to 700 kb of the TBX5 locus in search of cis-regulatory elements. We uncovered three enhancers that collectively recapitulate the endogenous expression pattern of TBX5 in the developing heart. We re-sequenced these enhancer elements in a cohort of non-syndromic patients with isolated atrial and/or ventricular septal defects, the predominant cardiac defects of the HoltOram syndrome, and identified a patient with a homozygous mutation in an enhancer approximate to 90 kb downstream of TBX5. Notably, we demonstrate that this single-base-pair mutation abrogates the ability of the enhancer to drive expression within the heart in vivo using both mouse and zebrafish transgenic models. Given the population-wide frequency of this variant, we estimate that 1/100 000 individuals would be homozygous for this variant, highlighting that a significant number of CHD associated with TBX5 dysfunction might arise from non-coding mutations in TBX5 heart enhancers, effectively decoupling the heart and hand phenotypes of the HoltOram syndrome.National Institutes of Health [HL088393, HG004428, DK078871]National Institutes of HealthGenetics and Regulation Training Grant [T32GM007197]Genetics and Regulation Training Gran

    Circulating Dipeptidyl Peptidase IV Activity Correlates With Cardiac Dysfunction in Human and Experimental Heart Failure

    No full text
    Background the present study addresses the hypothesis that the activity of dipeptidyl peptidase IV (DPPIV), an enzyme that inactivates peptides that possess cardioprotective actions, correlates with adverse outcomes in heart failure (HF). the therapeutic potential of DPPIV inhibition in preventing cardiac dysfunction is also investigated.Methods and Results Measurements of DPPIV activity in blood samples obtained from 190 patients with HF and 42 controls demonstrated that patients with HF exhibited an increase of approximate to 130% in circulating DPPIV activity compared with healthy subjects. Furthermore, an inverse correlation was observed between serum DPPIV activity and left ventricular (LV) ejection fraction in patients with HF. Similarly, radiofrequency LV ablation-induced HF rats displayed higher DPPIV activity in the plasma (approximate to 50%) and heart tissue (approximate to 3.5-fold) compared with sham-operated rats. Moreover, positive correlations were observed between the plasma DPPIV activity and LV end-diastolic pressure and lung congestion. Two days after surgery, 1 group of LV ablation-induced HF rats was treated with the DPPIV inhibitor sitagliptin (40 mg/kg BID) for 6 weeks, whereas the remaining rats were administered water. Hemodynamic measurements demonstrated that radiofrequency LV-ablated rats treated with sitagliptin exhibited a significant attenuation of HF-related cardiac dysfunction, including LV end-diastolic pressure, systolic performance, and chamber stiffness. Sitagliptin treatment also attenuated cardiac remodeling and cardiomyocyte apoptosis and minimized pulmonary congestion.Conclusions Collectively, the results presented herein associate circulating DPPIV activity with poorer cardiovascular outcomes in human and experimental HF. Moreover, the results demonstrate that long-term DPPIV inhibition mitigates the development and progression of HF in rats

    Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel

    No full text
    Chemical interactions between metal particles (Ag or Ni) dispersed in a low-cost MCM-41M produced from beach sand amorphous silica and sulfur compounds were evaluated in the deep adsorptive desulfurization process of real diesel fuel. N2 adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (STEM-EDX) were used for characterizing the adsorbents. HRTEM and XPS confirmed the high dispersion of Ag nanoparticles on the MCM-41 surface, and its chemical interaction with support and sulfur compounds by diverse mechanisms such as π-complexation and oxidation. Thermodynamic tests indicated that the adsorption of sulfur compounds over Ag(I)/MCM-41M is an endothermic process under the studied conditions. The magnitude of ΔH° (42.1 kJ/mol) indicates that chemisorptive mechanisms govern the sulfur removal. The best fit of kinetic and equilibrium data to pseudo-second order (R2 > 0.99) and Langmuir models (R2 > 0.98), respectively, along with the results for intraparticle diffusion and Boyd’s film-diffusion kinetic models, suggest that the chemisorptive interaction between organosulfur compounds and Ag nanosites controls sulfur adsorption, as seen in the XPS results. Its adsorption capacity (qm = 31.25 mgS/g) was 10 times higher than that obtained for pure MCM-41M and double the qm for the Ag(I)/MCM-41C adsorbent from commercial silica. Saturated adsorbents presented a satisfactory regeneration rate after a total of five sulfur adsorption cycles

    Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general population

    No full text
    Objective: To investigate the relationship between TXNIP polymorphisms, diabetes and hypertension phenotypes in the Brazilian general population. Methods: Five hundred seventy-six individuals randomly selected from the general urban population according to the MONICA-WHO project guidelines were phenotyped for cardiovascular risk factors. A second, independent, sample composed of 487 family-trios from a different site was also selected. Nine TXNIP polymorphisms were studied. The potential association between TXNIP variability and glucose-phenotypes in children was also explored. TXNIP expression was quantified by real-time PCR in 53 samples from human smooth muscle cells primary culture. Results: TXNIP rs7211 and rs7212 polymorphisms were significantly associated with glucose and blood pressure related phenotypes. In multivariate logistic regression models the studied markers remained associated with diabetes even after adjustment for covariates. TXNIP rs7211 T/rs7212 G haplotype (present in approximately 17% of individuals) was significantly associated to diabetes in both samples. In children, the TXNIP rs7211 T/rs7212 G haplotype was associated with fasting insulin concentrations. Finally, cells harboring TXNIP rs7212 G allele presented higher TXNIP expression levels compared with carriers of TXNIP rs7212 CC genotype (p = 0.02). Conclusion: Carriers of TXNIP genetic variants presented higher TXNIP expression, early signs of glucose homeostasis derangement and increased susceptibility to chronic metabolic conditions such as diabetes and hypertension. Our data suggest that genetic variation in the TXNIP gene may act as a "common ground" modulator of both traits: diabetes and hypertension. (C) 2011 Elsevier Ireland Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [01-00009-0]Prefeitura de Vitoria/FacitecPrefeitura de Vitoria/Facite
    corecore