90 research outputs found

    New insights in weathering analysis of anhydrous cements by using high spectral and spatial resolution confocal Raman microscopy

    Get PDF
    Raman spectroscopy combined with Confocal microscopy is a non-destructive technique that provides relevant structural information in materials. In this study, we present non-destructive Raman image and structural analysis of anhydrous cements with carbonation evidences by means of Confocal Raman Microscopy (CRM). The results obtained by CRM have been contrasted with the techniques commonly used for this purpose as FTIR and DTA/TG. CRM shows the main cement phases distribution (C2S and C3S) reveals their degree of weathering. The results obtained by CRM evidence a surprising coexistence of carbonate with amorphous carbon indicating that weathering mechanism in more complex than expected. Moreover, the size of sulphate particles contributes kinetically to weathering reaction. The weathering of cement particles by the atmospheric agents requires thus the combined action of amorphous carbon and sulphate. This study opens new analytical possibilities applied to commercial cements due to the combined chemical and spatial high resolution of CRM.This work was supported by the Spanish Ministry of Economy and Competitiveness through the Project MAT2013-48009-C4 and the Spanish National Research Council under Project NANOMIND CSIC201560E068

    Dielectric behaviour of Hf-doped CaCu3Ti4O12 ceramics obtained by conventional synthesis and reactive sintering

    Get PDF
    CaCu3(Ti4xHfx)O12 ceramics (JC = 0.04, 0.1 and 0.2) were prepared by conventional synthesis (CS) and through reactive sintering (RS), in which synthesis and sintering of the material take place in one single step. The microstructure and the dielectric properties of Hf-doped CCTO (CCTOHf) have been studied by XRD, FE-SEM, AFM, Raman and impedance spectroscopy (IS) in order to correlate the structure, microstructure and the electrical properties. Samples prepared by reactive sintering show slightly higher dielectric constant than those prepared by conventional synthesis in the same way than the pure CCTO. Dielectric constant and dielectric losses decrease slightly increasing Hf content. For CCTOHf ceramics with x> 0.04 for CS and x> 0.1 for RS, a secondary phase HfTi04 appears. As expected, the reactive sintering processing method allows a higher incorporation of Hf in the CCTO lattice than the conventional synthesis one

    Tailoring the thermoelectric properties of Skutterudites by nanocomposites

    Get PDF
    Póster presentado en la 34th Annual International Conference on Thermoelectrics (ICT) y en la 13th European Conference on Thermoelectrics(ECT), celebradas en Dresden del 28 de junio al 2 de julio de 2015.Skutterudites have attracted great attention for their promising potential on thermoelectric applications, such as harvesting the heat generated in industrial processes and automotive operations. To improve their thermoelectric figure of merit ,emphasis has gone into modifying the band structure through doping to enhance the Power Factor and reducing thermal conductivity through increasing phonon scattering by filling and in-situ nanocomposites formation.Depending on the nature of the nanoinclusions and the proportion in the matrix, it is possible to tailor the thermoelectric properties. In this work, different concentrations of oxides were included in a one-step synthesis mechanism, obtaining the Skutterudite phase with nanoinclusions and therefore, achieving lower thermal conductivities than those reported in literature.Peer Reviewe

    Through the Looking Glass: Technological Characterization of Roman Glasses Mimicking Precious Stones from the Gorga Collection (Museo Nazionale Romano—Palazzo Altemps)

    Get PDF
    This paper provides a detailed technological characterization of the Roman opus sectile glasses (second century AD) coming from the renowned Gorga collection. Nine glass samples corresponding to imitations of the porfido verde antico, cipollino rosso, rosso antico, giallo antico, diaspro nero e giallo, semesanto and agate/alabaster stones were studied. The aim of this study was twofold: (i) archaeometric, i.e., to provide valuable data on the production, raw materials and techniques of these refined Roman glasses that mimic precious stones and (ii) methodological, i.e., to highlight the good performance of combining polished thin sections and local probe measurements for the study of glassy microstructures. Based on the nature of the flux used, the glasses from the samples were classified as either natron-type or mixed-type (natron/plant ash). The latter stem from remelted glasses and contain relict grains of wollastonite that were not found in the pure natron samples. Relict wollastonite crystals appear to be a proficient petrographic marker to spot recycled glasses along with the commonly used chemical fingerprints. Different production and colouring techniques were identified, even for a given type of imitated stone. Metallic Cu, Ca antimonates and Pb-Fe antimonates were the three opacifiers used for the opaque glasses. Based on the crystal morphologies, metallic Cu and Ca antimoniates were possibly synthesized in situ simultaneously with the glass, whilst the Pb-Fe antimonates were prepared ex situ. The working temperatures for these glasses were estimated within the 900–1100 °C range based on the presence and known thermal stability of some identified crystal phases

    A Platform for Addressing Individual Magnetite Islands Grown Epitaxially on Ru(0001) and Manipulating Their Magnetic Domains

    Get PDF
    We have grown high-quality magnetite micrometric islands on ruthenium stripes on sapphire through a combination of magnetron sputtering (Ru film), high-temperature molecular beam epitaxy (oxide islands), and optical lithography. The samples have been characterized by atomic force microscopy, Raman spectroscopy, X-ray absorption and magnetic circular dichroism in a photoemission microscope. The magnetic domains on the magnetite islands can be modified by the application of current pulses through the Ru stripes in combination with magnetic fields. The modification of the magnetic domains is explained by the Oersted field generated by the electrical current flowing through the stripes underneath the magnetite nanostructures. The fabrication method is applicable to a wide variety of rock salt and spinel oxides

    A combined micro-Raman, X-ray absorption and magnetic study to follow the glycerol-assisted growth of epsilon-iron oxide sol-gel coatings

    Get PDF
    [EN] Epsilon iron oxide (ε-FeO) coatings on Si(100) substrates are obtained by an easy one-pot sol-gel recipe assisted by glycerol in an acid medium. Glycerol, given its small dimensions, enables the formation of ε-FeO nanoparticles with a size of a few nanometers and the highest purity is reached in coatings after a densification treatment at 960 °C. The structural and compositional evolution up to 1200 °C is studied by confocal Raman microscopy and X-ray absorption spectroscopy techniques, correlating the existing magnetic properties. We report a novel characterization method, which allows monitoring the evolution of the precursor micelles as well as the intermediate and final phases formed. Furthermore, the inherent industrial technology transfer of the sol-gel process is also demonstrated with the ε-FeO polymorph, impelling its application in the coatings form.This work has been supported by the Ministerio de Ciencia e Innovación (MCINN, Spain) through the projects PIE: 2021-60-E-030, PIE: 2010-6-OE-013, PID2019-104717RB-I00 (2020–2022), MAT2017-86540-C4-1-R, RTI2018-095856-B-C21 (2019–2021), RTI2018-097895-B-C43 and RTI2018-095303-A-C52. The authors are grateful to The ESRF (France), MCINN and Consejo Superior de Investigaciones Científicas (CSIC, Spain) for the provision of synchrotron radiation facilities and to the BM25-SpLine Staff for their valuable help. A.S.and A.M.-N acknowledge financial support from Comunidad de Madrid (Spain) for an “Atracción de Talento Investigador” Contract 2017-t2/IND5395 and 2018-T1/IND-10360, respectivel

    Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process

    Get PDF
    [EN] The use of rare-earth-based permanent magnets is one of the critical points for the development of the current technology. On the one hand, industry of the rare-earths is highly polluting due to the negative environmental impact of their extraction and, on the other hand, the sector is potentially dependent on China. Therefore, investigation is required both in the development of rare-earth-free permanent magnets and in sintering processes that enable their greener fabrication with attractive magnetic properties at a more competitive price. This work presents the use of a cold sintering process (CSP) followed by a post-annealing at 1100 °C as a new way to sinter composite permanent magnets based on strontium ferrite (SFO). Composites that incorporate a percentage ≤ 10% of an additional magnetic phase have been prepared and the morphological, structural and magnetic properties have been evaluated after each stage of the process. CSP induces a phase transformation of SFO in the composites, which is partially recovered by the post-thermal treatment improving the relative density to 92% and the magnetic response of the final magnets with a coercivity of up to 3.0 kOe. Control of the magnetic properties is possible through the composition and the grain size in the sintered magnets. These attractive results show the potential of the sintering approach as an alternative to develop modern rare-earth-free composite permanent magnets.This work has been supported by the Ministerio Español de Ciencia e Innovación (MICINN), Spain, through the projects MAT2017-86540-C4-1-R and RTI2018-095303-A-C52, and by the European Commission through Project H2020 No. 720853 (Amphibian). C.G.-M. and A.Q. acknowledge financial support from MICINN through the “Juan de la Cierva” program (FJC2018-035532-I) and the “Ramón y Cajal” contract (RYC-2017-23320). S. R.-G. gratefully acknowledges the financial support of the Alexander von Humboldt foundation, Germany. A.S. acknowledges the financialsupport from the Comunidad de Madrid, Spain, for an “Atracción de Talento Investigador” contract (No. 2017-t2/IND5395)

    Further progress in the study of epsilon iron oxide in archaeological baked clays

    Get PDF
    [EN] The occurrence of ε-FeO in archaeological samples that have been subjected to high temperatures is gradually being detected by the use of micrometric structural characterization techniques. This work provides new information by revealing that the ε-FeO is formed as a response to temperature, the aggregation state and the position within the baked clay with respect to the nearest heat source. In addition, depending mainly on the atmospheric environment, the temperature reached by the combustion structure, the distance from the heating source and the particle aggregation, other iron oxide magnetic phases are produced. In the baked clay studied here, hematite is found over the whole range of samples studied but its magnetic contribution is negligible. Magnetite is observed at the sample surface, probably due to local atmospheric environment closest to the combustion source. Maghemite is found at all depths up to 6 cm below the sample surface. ε-FeO has a limited distribution, found within 2–3 cm of the sample surface. Furthermore, the viability of this compound as a palaeofield marker has been evaluated in both archaeological and synthetic samples. The results indicate that ε-FeO is able to register the direction of the magnetic field. Linear palaeointensity plots have been obtained in synthetic samples, although the value of the palaeofield could be, sometimes, overestimated.The authors also acknowledge the financial support from the Spanish Ministry of Science, Innovation and Universities under the projects RTI2018-095856-B-C21, CGL2017-87015-P, CGL2017-92285-EXP, CGL2017-92285-EXP/BTE, MAT2017-86540-C4-1-R, MAT2017-87072-C4-2-P and RTI2018-095303-A-C52, from Comunidad de Madrid NANOFRONTMAG S2013/MIT-2850 and NANOMAGCOST S2018/NMT-4321, and from the European Commission under H2020 frame by AMPHIBIAN Project ID: 720853. APO thanks the Ministry of Economy, Industry and Competitiveness (PTA Contract).Peer reviewe

    Resolución estructural en 3D de electrocerámicas mediante microscopía Raman confocal

    Get PDF
    Las propiedades de los materiales cerámicos son una combinación entre las propiedades intrínsecas, definidas por los granos cristalinos, y las propiedades extrínsecas, como son bordes de grano y fases secundarias. La relación entre estos dos elementos produce en muchas ocasiones, la presencia de propiedades inusuales que son la base de muchos materiales electrocerámicos. Sirvan como ejemplo algunos materiales tipo como son: varistores cerámicos, termistores, materiales con coeficiente de resistividad positivo, sensores de borde de grano, etc. En un material electrocerámico con respuesta funcional la correlación entre estructura-microestructura -propiedades es una constante, tanto en la etapa de diseño en laboratorio como en la etapa de producción industrial. El empleo de Microscopía Raman Confocal (MRC) se propone como una metodología relevante para el estudio de los factores que afectan a dichas correlaciones en materiales electrocerámicos. La técnica de MRC constituye una potente herramienta que permite determinar no solo la estructura sino las interacciones entre los elementos microestructurales. La correlación entre estas variables con las propiedades funcionales y la posibilidad de determinar las mismas en condiciones de operación, abren unas posibilidades que hasta la fecha solo estaban en la imaginación de los científicos. En esta presentación se resumen brevemente algunos de los principios relacionados con la técnica de Microscopía Raman Confocal, que junto con ejemplos seleccionados permiten visualizar aspectos relacionados con: la orientación de cristales, identificación fases cristalinas; resolución de nanoestructuras e interfases; determinación y dinámica de dominios ferroeléctricos; presencia de tensiones mecánicas; fenómenos de conducción,... sobre diferentes materiales cerámicos. Los trabajos mostrados son ejemplos de alta resolución en 3D de materiales funcionales como son los materiales electrocerámicos

    Through the Looking Glass: Technological Characterization of Roman Glasses Mimicking Precious Stones from the Gorga Collection (Museo Nazionale Romano—Palazzo Altemps)

    Get PDF
    This paper provides a detailed technological characterization of the Roman opus sectile glasses (second century AD) coming from the renowned Gorga collection. Nine glass samples corresponding to imitations of the porfido verde antico, cipollino rosso, rosso antico, giallo antico, diaspro nero e giallo, semesanto and agate/alabaster stones were studied. The aim of this study was twofold: (i) archaeometric, i.e., to provide valuable data on the production, raw materials and techniques of these refined Roman glasses that mimic precious stones and (ii) methodological, i.e., to highlight the good performance of combining polished thin sections and local probe measurements for the study of glassy microstructures. Based on the nature of the flux used, the glasses from the samples were classified as either natron-type or mixed-type (natron/plant ash). The latter stem from remelted glasses and contain relict grains of wollastonite that were not found in the pure natron samples. Relict wollastonite crystals appear to be a proficient petrographic marker to spot recycled glasses along with the commonly used chemical fingerprints. Different production and colouring techniques were identified, even for a given type of imitated stone. Metallic Cu, Ca antimonates and Pb-Fe antimonates were the three opacifiers used for the opaque glasses. Based on the crystal morphologies, metallic Cu and Ca antimoniates were possibly synthesized in situ simultaneously with the glass, whilst the Pb-Fe antimonates were prepared ex situ. The working temperatures for these glasses were estimated within the 900–1100 °C range based on the presence and known thermal stability of some identified crystal phases.IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S). This research was partially funded by the Spanish Ministry of Economía, Industria y Competitividad, grant MAT2015-67593-P.Peer reviewe
    corecore