397 research outputs found

    CXCR4 pos circulating progenitor cells coexpressing monocytic and endothelial markers correlating with fibrotic clinical features are present in the peripheral blood of patients affected by systemic sclerosis

    Get PDF
    There is still controversy regarding the role of circulating endothelial and progenitor cells (CECs/CEPs) in the pathogenesis of systemic sclerosis (SSc). Using a sequential Boolean gating strategy based on a 4-color flow cytometric protocol, an increased number of CD31(pos)/CD184(pos)(CXCR4)/CD34(pos)/CD45(pos) and CD31(pos)/CD117(pos) (c-kit-R) /CD34(pos)/ CD45(pos) hematopoietic circulating progenitor cells (HCPCs) was detected in SSc patients compared with healthy subjects. In SSc, no circulating mature and progenitor endothelial cells were observed, while an enhanced generation of erythroid progenitor cells was found to be correlated with the presence of CD117+ HCPCs. The presence of freshly detected CXCR4posHCPC was correlated either to the in vitro cultured spindle-shaped endothelial like cells (SELC) with an endo/myelomonocytic profile or to SDF-1 and VEGF serum level. These data are related to more fibrotic clinical features of the disease, thus supporting a possible role of these cells in fibrosis

    The induction of α-helical structure in partially unfolded HypF-N does not affect its aggregation propensity

    Get PDF
    The conversion of proteins into structured fibrillar aggregates is a central problem in protein chemistry, biotechnology, biology and medicine. It is generally accepted that aggregation takes place from partially structured states of proteins. However, the role of the residual structure present in such conformational states is not yet understood. In particular, it is not yet clear as to whether the α-helical structure represents a productive or counteracting structural element for protein aggregation. We have addressed this issue by studying the aggregation of pH-unfolded HypF-N. It has previously been shown that the two native α-helices of HypF-N retain a partial α-helical structure in the pH-unfolded state and that these regions are also involved in the formation of the cross-β structure of the aggregates. We have introduced mutations in such stretches of the sequence, with the aim of increasing the α-helical structure in the key regions of the pH-unfolded state, while minimizing the changes of other factors known to influence protein aggregation, such as hydrophobicity, β-Sheet propensity, etc. The resulting HypF-N mutants have higher contents of α-helical structure at the site(s) of mutation in their pH-unfolded states, but such an increase does not correlate with a change of aggregation rate. The results suggest that stabilisation of α-helical structure in amyloidogenic regions of the sequence of highly dynamic states does not have remarkable effects on the rate of protein aggregation from such conformational states. Comparison with other protein systems indicate that the effect of increasing α-helical propensity can vary if the stabilised helices are in non-amyloidogenic stretches of initially unstructured peptides (accelerating effect), in amyloidogenic stretches of initially unstructured peptides (no effect) or in amyloidogenic stretches of initially stable helices (decelerating effect

    Predictive value of hematological and phenotypical parameters on postchemotherapy leukocyte recovery

    Get PDF
    Background: Grade IV chemotherapy toxicity is defined as absolute neutrophil count <500/μL. The nadir is considered as the lowest neutrophil number following chemotherapy, and generally is not expected before the 7th day from the start of chemotherapy. The usual prophylactic dose of rHu-G-CSF (Filgrastim) is 300 μg/day, starting 24-48 h after chemotherapy until hematological recovery. However, individual patient response is largely variable, so that rHu-G-CSF doses can be different. The aim of this study was to verify if peripheral blood automated flow cytochemistry and flow cytometry analysis may be helpful in predicting the individual response and saving rHu-G-CSF. Methods: During Grade IV neutropenia, blood counts from 30 cancer patients were analyzed daily by ADVIA 120 automated flow cytochemistry analyzer and by Facscalibur flow cytometer till the nadir. "Large unstained cells" (LUCs), myeloperoxidase index (MPXI), blasts, and various cell subpopulations in the peripheral blood were studied. At nadir rHu-G-CSF was started and 81 chemotherapy cycles were analyzed. Cycles were stratified according to their number and to two dose-levels of rHuG-CSF needed to recovery (300-600 vs. 900-1200 μg) and analyzed in relation to mean values of MPXI and mean absolute number of LUCs in the nadir phase. The linear regressions of LUCs % over time in relation to two dose-levels of rHu-G-CSF and uni-multivariate analysis of lymphocyte subpopulations, CD34+ cells, MPXI, and blasts were also performed. Results: In the nadir phase, the increase of MPXI above the upper limit of normality (>10; median 27.7), characterized a slow hematological recovery. MPXI levels were directly related to the cycle number and inversely related to the absolute number of LUCs and CD34 +/CD45+ cells. A faster hematological recovery was associated with a higher LUC increase per day (0.56% vs. 0.25%), higher blast (median 36.7/μL vs. 19.5/μL) and CD34+/CD45+ cell (median 2.2/μL vs. 0.82/μL) counts. Conclusions: Our study showed that some biological indicators such as MPXI, LUCs, blasts, and CD34 +/CD45+ cells may be of clinical relevance in predicting individual hematological response to rHu-G-CSF. Special attention should be paid when nadir MPXI exceeds the upper limit of normality because the hematological recovery may be delayed. © 2009 Clinical Cytometry Society

    Year-round variation in the isotopic niche of Scopoli's shearwater (Calonectris diomedea) breeding in contrasting sea regions of the Mediterranean Sea

    Get PDF
    Top marine predators are key components of marine food webs. Among them, long-distance migratory seabirds, which travel across different marine ecosystems over the year, may experience important year-round changes in terms of oceanographic conditions and availability of trophic resources. We tested whether this was the case in the Scopoli's shearwater (Calonectris diomedea), a trans-equatorial migrant and top predator, by sampling birds breeding in three environmentally different regions of the Mediterranean Sea. The analysis of positional data and stable isotopes (δ1³C and δ15N) of target feathers revealed that birds from the three regions were spatially segregated during the breeding period while they shared non-breeding areas in the Atlantic Ocean. Isotopic baseline levels of N and C (meso-zooplankton) were significantly different among marine regions during breeding. Such variation was reflected at the higher trophic levels of pelagic and demersal fish muscles as well as in shearwater feathers grown in the Mediterranean. δ15N- and δ13C-adjusted values of shearwaters were significantly different among populations suggesting that birds from different breeding areas relied on prey species from different trophic levels. Conversely, the non-breeding spatial and isotopic niches overlapped greatly among the three populations. Shearwater trophic niches during breeding were narrower and segregated compared to the non-breeding period, revealing a high plasticity in trophic resource use. Overall, this study highlights seasonal and region-specific use of trophic resources by Scopoli's shearwater, suggesting a broad trophic plasticity and possibly a high adaptability to environmental changes

    Individual quality assessment of autografting by probability estimation for clinical endpoints: a prospective validation study from the European group for blood and marrow transplantation.

    Get PDF
    The aim of supportive autografting is to reduce the side effects from stem cell transplantation and avoid procedure-related health disadvantages for patients at the lowest possible cost and resource expenditure. Economic evaluation of health care is becoming increasingly important. We report clinical and laboratory data collected from 397 consecutive adult patients (173 non-Hodgkin lymphoma, 30 Hodgkin lymphoma, 160 multiple myeloma, 7 autoimmune diseases, and 28 acute leukemia) who underwent their first autologous peripheral blood stem cell transplantation (PBSCT). We considered primary endpoints evaluating health economic efficacy (eg, antibiotic administration, transfusion of blood components, and time in hospital), secondary endpoints evaluating toxicity (in accordance with Common Toxicity Criteria), and tertiary endpoints evaluating safety (ie, the risk of regimen-related death or disease progression within the first year after PBSCT). A time-dependent grading of efficacy is proposed with day 21 for multiple myeloma and day 25 for the other disease categories (depending on the length of the conditioning regimen) as the acceptable maximum time in hospital, which together with antibiotics, antifungal, or transfusion therapy delineates four groups: favorable (≤7 days on antibiotics and no transfusions; ≤21 [25] days in hospital), intermediate (from 7 to 10 days on antibiotics and 7 days on antibiotics, >3 but 30/34 days in hospital after transplantation), and very unfavorable (>10 days on antibiotics, >6 transfusions; >30 to 34 days in hospital). The multivariate analysis showed that (1) PBSC harvests of ≥4 × 106/kg CD34 + cells in 1 apheresis procedure were associated with a favorable outcome in all patient categories except acute myelogenous leukemia and acute lymphoblastic leukemia (P = .001), (2) ≥5 × 106/kg CD34 + cells infused predicted better transplantation outcome in all patient categories (P 500 mL) (P = .002), and (5) patients with a central venous catheter during both collection and infusion of PBSC had a more favorable outcome post-PBSCT than peripheral access (P = .007). The type of mobilization regimen did not affect the outcome of auto-PBSCT. The present study identified predictive variables, which may be useful in future individual pretransplantation probability evaluations with the goal to improve supportive care

    Assessment of distribution of CD34 epitope classes in fresh and cryopreserved peripheral blood progenitor cells and acute myeloid leukemic blasts.

    Get PDF
    So far several reports have described changes in the expression of surface antigens in progenitor cells and blasts following cryopreservation. However, there are no data on the effects of cryopreservation on the expression of the three CD34 epitope classes, and on their relationship with the clonogenic capacity of PBPC collected by leukapheresis. DESIGN AND METHODS: In order to analyze the effects of freezing/thawing procedures (Eth 80C storage for 3 months) and use of dimethylsulfoxide (DMSO) on the immunophenotype profile and colony production of peripheral blood progenitor cells (PBPC) in apheresis products derived from 20 patients with stage 0-III non-Hodgkin's lymphoma (nHL), a flow cytometry study was undertaken using different CD34 monoclonal antibodies (MoAbs) capable of recognizing the 3 epitope classes of CD34 molecule (class III: HPCA-2/FITC, HPCA-2/PE, 581/FITC, 581/PE; class II: Q-Bend 10/PE; class I: ICH3/PE, BI3C5-PE, Immu-133-PE). CD34 epitope expression was also analyzed in thawed CD34+ blasts obtained from 14 patients with acute myeloid leukemia (AML), who were analyzed using a larger number (#17) of CD34 epitope class I, II, and III reactive MoAbs. RESULTS: Under our experimental conditions it was found that class III and class II CD34 epitopes (differentially resistant to enzymatic cleavage with neuraminidase, chymopapain and glycoprotease) are better preserved than class I epitope Eth sensitive to degradation Eth after cell exposure to cryoprotectant DMSO and the freezing- thawing procedures. Results further showed a concomitant decrease in class I CD34+ counts and in BFU-E colony production. A significant increase in CD34 antigen expression levels (i.e. antibody binding capacity, ABC) by cryopreserved cells stained with CD34 epitope class III, and class II reactive MoAbs was also documented, while no changes after cryopreservation were noted using class I-reactive MoAbs. The slight increase in the percentage of CD34+ cells detected after frozen storage was correlated to a concomitant decrease in the number of more mature myeloid cells (CD15+, CD13+, CD33+). Compared to pre-cryopreservation values, a slight reduction in class I CD34 epitope expression was also found in thawed CD34+ AML blasts. INTERPRETATION AND CONCLUSIONS: As far as the reduction of class I CD34 epitope is concerned, it may be hypothesized that the freezing procedure, use of DMSO, and/or lysis methodology may either damage a CD34 subset, or induce distinct alterations of the CD34 glycoprotein, possibly determining a reduction in their immunoreactivity with some CD34 MoAbs. In conclusion, this study has shown that exposure to the cryoprotectant DMSO and the freezing/thawing procedures modifies the distribution of CD34 epitopes as well as the clonogenic capacity of PBPCs from nHL patients, and CD34+ blasts from AML. These findings need to considered when selecting CD34 MoAbs for enumeration and positive selection of stem/progenitor cells for research and clinical purposes

    Prophylactic heparin and risk of orotracheal intubation or death in patients with mild or moderate COVID-19 pneumonia

    Get PDF
    Prophylactic low molecular weight heparin (pLMWH) is currently recommended in COVID-19 to reduce the risk of coagulopathy. The aim of this study was to evaluate whether the antinflammatory effects of pLMWH could translate in lower rate of clinical progression in patients with COVID-19 pneumonia. Patients admitted to a COVID-hospital in Rome with SARS-CoV-2 infection and mild/moderate pneumonia were retrospectively evaluated. The primary endpoint was the time from hospital admission to orotracheal intubation/death (OTI/death). A total of 449 patients were included: 39% female, median age 63 (IQR, 50–77) years. The estimated probability of OTI/death for patients receiving pLMWH was: 9.5% (95% CI 3.2–26.4) by day 20 in those not receiving pLMWH vs. 10.4% (6.7–15.9) in those exposed to pLMWH; p-value = 0.144. This risk associated with the use of pLMWH appeared to vary by PaO_{2}/FiO_{2} ratio aHR 1.40 (95% CI 0.51–3.79) for patients with an admission PaO_{2}/FiO_{2} ≤ 300 mmHg and 0.27 (0.03–2.18) for those with PaO_{2}/FiO_{2} > 300 mmHg; p-value at interaction test 0.16. pLMWH does not seem to reduce the risk of OTI/death mild/moderate COVID-19 pneumonia, especially when respiratory function had already significantly deteriorated. Data from clinical trials comparing the effect of prophylactic vs. therapeutic dosage of LMWH at various stages of COVID-19 disease are needed

    Novel risk stratification algorithm for estimating the risk of death in patients with relapsed multiple myeloma: external validation in a retrospective chart review.

    Get PDF
    OBJECTIVES AND DESIGN: A novel risk stratification algorithm estimating risk of death in patients with relapsed multiple myeloma starting second-line treatment was recently developed using multivariable Cox regression of data from a Czech registry. It uses 16 parameters routinely collected in medical practice to stratify patients into four distinct risk groups in terms of survival expectation. To provide insight into generalisability of the risk stratification algorithm, the study aimed to validate the risk stratification algorithm using real-world data from specifically designed retrospective chart audits from three European countries. PARTICIPANTS AND SETTING: Physicians collected data from 998 patients (France, 386; Germany, 344; UK, 268) and applied the risk stratification algorithm. METHODS: The performance of the Cox regression model for predicting risk of death was assessed by Nagelkerke's R2, goodness of fit and the C-index. The risk stratification algorithm's ability to discriminate overall survival across four risk groups was evaluated using Kaplan-Meier curves and HRs. RESULTS: Consistent with the Czech registry, the stratification performance of the risk stratification algorithm demonstrated clear differentiation in risk of death between the four groups. As risk groups increased, risk of death doubled. The C-index was 0.715 (95% CI 0.690 to 0.734). CONCLUSIONS: Validation of the novel risk stratification algorithm in an independent 'real-world' dataset demonstrated that it stratifies patients in four subgroups according to survival expectation

    A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation

    Get PDF
    The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry
    • …
    corecore