92 research outputs found

    Infrared observations of the dust coma

    Get PDF
    The main infrared observational results were briefly reviewed at the start of this session. The new results are summarized. All of these results have yet to be synthesized into a self-consistent picture of the dust grain composition, dust production history, outburst mechanisms, and composition of the nucleus. The workshop discussion was helpful in pointing out problems faced by theorists, such as data quality, the lack of the proper theory for computing the scattering and emission of irregular particles, and in some cases the lack of optical constants of realistic materials. It is expected that the gross spectral and dynamical properties of Halley's Comet can be understood in time, even if the details of the observations and the theoretical calculations continue to vex us in the future

    The 10 micron spectral structure in comets

    Get PDF
    The 10 micron spectra of comets Halley (1982i), Wilson (1986l), Kohoutek (1973f) and Bradfield (1987s) are presented and compared. The silicate emission profiles of Halley and Bradfield are seen to be remarkably similar in that both contain a sharp break in the spectrum at 11.3 microns. Comet Bradfield does not show the same double peak structure seen in olivine and reported in Comet Halley be Campins and Ryan (1988) and Bregman, et al. (1987). The authors interpret the 11.3 micron signature as being due to olivine-type dust grains with at least some degree of crystallinity. Olivine alone is not enough to reproduce the shape of the 10 micron structure. However, in view of the authors' past success in fitting interstellar dust features with the emissivity profile obtained from amorphous grains produced by laser-vaporizing olivine, this is a very appealing identification. They note that there are significant variations in olivine spectra due to compositional differences, grain size distribution and related grain temperature variations to make the olivine identification tentative. They further tentatively identify the 9.8 micron feature in Halley as being due to either amorphorous olivine or a phyllosilicate (layer lattice). Neither the spectra of Halley, Kohoutek, nor Bradfield exhibited the 12.2 micron feature seen in Comet Wilson, which may prove diagnostic of the composition or thermal history differences between these comets. IR spectra of various mineral samples are discussed in terms of their match to cometary spectra

    Chiron and the Centaurs: Escapees from the Kuiper Belt

    Get PDF
    The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt

    The dust coma of Comet Austin (1989c1)

    Get PDF
    Thermal-infrared (10 and 20 micron) images of Comet Austin were obtained on UT 30.6 Apr., 1.8, 2.8, and 3.6 May 1990. The NASA-Marshall Space Flight Center 20 pixel bolometer array at the NASA 3 meter Infrared Telescope Facility in Hawaii was used. The 10.8 micron (FWHM = 5.3 microns) maps were obtained with maximum dimensions of 113 arcsec (57,500 km) in RA and 45 arcsec (23,000 km) in declination, with a pixel size of 4.2 x 4.2 arcsec. A smaller, 45 x 18 arcsec, map was obtained in the 19.2 micron (FWHM = 5.2 microns) bandpass. At the time of these observations Comet Austin's heliocentric and geocentric distances were 0.7 and 0.5 AU respectively. The peak flux density (within the brightest pixel) was 23 + or - 2 Janskys for the first three dates and only marginally lower the last day; i.e., within the observational uncertainties no evidence was found for day-to-day variability like that observed in Comet Halley. A dynamical analysis of the morphology of the extended dust emission is used to constrain the size distribution and production rate of the dust particles. The results of this analysis are compared with similar studies carried out on comets P/Giacobini-Zinner, P/Brorsen-Metcalf, P/Halley, P/Tempel 2, and Wilson (1987)

    Airborne 20-65 micron spectrophotometry of Comet Halley

    Get PDF
    Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed

    Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4 m GTC

    Full text link
    Two primitive near Earth asteroids, (101955) Bennu and (162173) Ryugu, will be visited by a spacecraft with the aim of returning samples back to Earth. Since these objects are believed to originate in the inner main belt primitive collisional families (Erigone, Polana, Clarissa, and Sulamitis) or in the background of asteroids outside these families, the characterization of these primitive populations will enhance the scientific return of the missions. The main goal of this work is to shed light on the composition of the Erigone collisional family by means of visible spectroscopy. Asteroid (163) Erigone has been classified as a primitive object, and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5 to 0.9 microns) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. We found that 87 percent of the objects have typically primitive visible spectra consistent with that of (163) Erigone. In addition, we found that a significant fraction of these objects (approximately 50 percent) present evidence of aqueous alteration

    The Origin Of Asteroid 101955 (1999 Rq(36))

    Get PDF
    Near-Earth asteroid (NEA) 101955 (1999 RQ(36); henceforth RQ36) is especially accessible to spacecraft and is the primary target of NASA\u27s OSIRIS-REx sample return mission; it is also a potentially hazardous asteroid. We combine dynamical and spectral information to identify the most likely main-belt origin of RQ(36) and we conclude that it is the Polana family, located at a semimajor axis of about 2.42 AU. We also conclude that the Polana family may be the most important inner-belt source of low-albedo NEAs. These conclusions are based on the following results. (1) Dynamical evidence strongly favors an inner-belt, low-inclination (2.15 AU \u3c a \u3c 2.5 AU and i \u3c 10 degrees) origin, suggesting the v(6) resonance as the preferred (95% probability) delivery route. (2) This region is dominated by the Nysa and Polana families. (3) The Polana family is characterized by low albedos and B-class spectra or colors, the same albedo and spectral class as RQ36. (4) The Sloan Digital Sky Survey colors show that the Polana family is the branch of the Nysa-Polana complex that extends toward the v(6) resonance; furthermore, the Polana family has delivered objects of the size of RQ36 and larger into the v(6) resonance. (5) A quantitative comparison of visible and near-infrared spectra does not yield a unique match for RQ36; however, it is consistent with a compositional link between RQ36 and the Polana family
    corecore