6 research outputs found

    Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Get PDF
    Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility

    A national training program for simulation educators and technicians: evaluation strategy and outcomes

    Get PDF
    Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Simulation-based education (SBE) has seen a dramatic uptake in health professions education over the last decade. SBE offers learning opportunities that are difficult to access by other methods. Competent faculty is seen as key to high quality SBE. In 2011, in response to a significant national healthcare issue--the need to enhance the quality and scale of SBE--a group of Australian universities was commissioned to develop a national training program--Australian Simulation Educator and Technician Training (AusSETT) Program. This paper reports the evaluation of this large-scale initiative. METHODS: The AusSETT Program adopted a train-the-trainer model, which offered up to three days of workshops and between four and eight hours of e-learning. The Program was offered across all professions in all states and territories. Three hundred and three participants attended workshops with 230 also completing e-learning modules. Topics included: foundational learning theory; orientation to diverse simulation modalities; briefing; and debriefing. A layered objectives-oriented evaluation strategy was adopted with multiple stakeholders (participants, external experts), methods of data collection (end of module evaluations, workshop observer reports and individual interviews) and at multiple data points (immediate and two months later). Descriptive statistics were used to analyse numerical data while textual data (written comments and transcripts of interviews) underwent content or thematic analysis. RESULTS: For each module, between 45 and 254 participants completed evaluations. The content and educational methods were rated highly with items exceeding the pre-established standard. In written evaluations, participants identified strengths (e.g. high quality facilitation, breadth and depth of content) and areas for development (e.g. electronic portfolio, learning management system) of the Program. Interviews with participants suggested the Program had positively impacted their educational practices. Observers reported a high quality educational experience for participants with alignment of content and methods with perceived participant needs. CONCLUSIONS: The AusSETT Program is a significant and enduring learning resource. The development of a national training program to support a competent simulation workforce is feasible. The Program objectives were largely met. Although there are limitations with the study design (e.g. self-report), there are strengths such as exploring the impact two months later. The evaluation of the Program informs the next phase of the national strategy for simulation educators and technicians with respect to content and processes, strengths and areas for development

    Warranties or Fix-It-Yourself?

    No full text
    The technical skills required to service and operate education technologies, including simulators and audiovisual, have the potential to enhance the educational outcomes and influence the cost of simulation programs dramatically. This chapter focuses on the technical considerations for the delivery of simulation-based programs by examining different models of supporting the technical requirements. The work examines industry warranties, outsourcing technical support and in-house technical programs as delivered by simulation services. Examples of in situ simulation, simulation programs, and skills development services are used to illustrate the skills, technologies, and contractual and logistical considerations required to deliver simulation in healthcare. The potential savings through in-house maintenance and repairs can be significant; however, understanding the skills, scale, and redundancy requirement is crucial to sustaining simulation capabilities

    Moulage in high-fidelity simulation-A chest wall burn escharotomy model for visual realism and as an educational tool

    No full text
    Introduction: There is a paucity of literature pertaining to the role and techniques of moulage for creating high-fidelity medical simulations. As part of an Intensive Care Crisis Event Management Course, simulation of an extensive torso burn was desired. The aim of the moulage was to enhance the realism of the scenario but additionally to enable a chest wall escharotomy to be performed

    The S.T.A.B. Trial-Standardized testing of artificial blood: A comparative study of various products that may be used as artificial blood for high fidelity simulation training in the critical care setting

    No full text
    Aim: In the current climate of medical education, there is an ever-increasing demand for and emphasis on simulation as both a teaching and training tool. The objective of our study was to compare the realism and practicality of a number of artificial blood products that could be used for high-fidelity simulation. Method: A literature and internet search was performed and 15 artificial blood products were identified from a variety of sources. One product was excluded due to its potential toxicity risks. Five observers, blinded to the products, performed two assessments on each product using an evaluation tool with 14 predefined criteria including color, consistency, clotting, and staining potential to manikin skin and clothing. Each criterion was rated using a five-point Likert scale. The products were left for 24 hours, both refrigerated and at room temperature, and then reassessed. Statistical analysis was performed to identify the most suitable products, and both inter- and intra-rater variability were examined. Results: Three products scored consistently well with all five assessors, with one product in particular scoring well in almost every criterion. This highest-rated product had a mean rating of 3.6 of 5.0 (95% posterior Interval 3.4-3.7). Inter-rater variability was minor with average ratings varying from 3.0 to 3.4 between the highest and lowest scorer. Intrarater variability was negligible with good agreement between first and second rating as per weighted kappa scores (K = 0.67). Conclusion: The most realistic and practical form of artificial blood identified was a commercial product called KD151 Flowing Blood Syrup. It was found to be not only realistic in appearance but practical in terms of storage and stain removal
    corecore