3,215 research outputs found

    Women are more likely than men to blame structural factors for women's political under-representation: evidence from 27 countries

    Get PDF
    Over time, gender and politics research has made progress in identifying those factors that result in low numbers of women in political institutions and in making evidence-informed suggestions about how to ameliorate them. These factors include discrimination in party recruitment processes, male-dominated political culture and broader gender inequalities in society. In contrast, little is known about public opinion regarding these drivers of women's political under-representation, especially whether to who or what women assign blame for the under-representation of women in politics differs from men. This article provides the first discussion and analysis of blame assignment for women's numeric under-representation in politics. In doing so, it outlines and operationalises a framework that distinguishes between meritocratic explanations of women's under-representation, whereby the blame for women not holding political office in greater numbers is assigned to women themselves, and structural explanations, whereby social forces external to women are seen to result in their numeric under-representation. Cross-national data from 27 European countries is used to show that women are significantly more likely than men to assign blame for women's numeric under-representation to structural factors. The hierarchical nature of the dataset is exploited using multilevel models and significant differences in levels of structural blame assignment between countries is found as well as between-country variation in the probability of women assigning blame to structural explanations for women's under-representation. Finally, the category of structural explanations is disaggregated in order to assess their relative prominence and to provide strong corroborative evidence that women predominantly assign blame for women's under-representation to political culture over other structural blame factors. The article concludes with a discussion of the implications of the study's findings for policy makers contemplating the pursuit of gender equality policies aimed at increasing women's political representation and makes suggestions for the direction of future research in this area.</p

    Performance of ALICE pixel prototypes in high energy beams

    Full text link
    The two innermost layers of the ALICE inner tracking system are instrumented with silicon pixel detectors. Single chip assembly prototypes of the ALICE pixels have been tested in high energy particle beams at the CERN SPS. Detection efficiency and spatial precision have been studied as a function of the threshold and the track incidence angle. The experimental method, data analysis and main results are presented.Comment: 10 pages, 9 figures, contribution to PIX2005 Workshop, Bonn (Germany), 5-8 September 200

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning

    Design choices made by target users for a pay-for-performance program in primary care: an action research approach

    Get PDF
    Contains fulltext : 110832.pdf (publisher's version ) (Open Access)BACKGROUND: International interest in pay-for-performance (P4P) initiatives to improve quality of health care is growing. Current programs vary in the methods of performance measurement, appraisal and reimbursement. One may assume that involvement of health care professionals in the goal setting and methods of quality measurement and subsequent payment schemes may enhance their commitment to and motivation for P4P programs and therefore the impact of these programs. We developed a P4P program in which the target users were involved in decisions about the P4P methods. METHODS: For the development of the P4P program a framework was used which distinguished three main components: performance measurement, appraisal and reimbursement. Based on this framework design choices were discussed in two panels of target users using an adapted Delphi procedure. The target users were 65 general practices and two health insurance companies in the South of the Netherlands. RESULTS: Performance measurement was linked to the Dutch accreditation program based on three domains (clinical care, practice management and patient experience). The general practice was chosen as unit of assessment. Relative standards were set at the 25th percentile of group performance. The incentive for clinical care was set twice as high as the one for practice management and patient experience. Quality scores were to be calculated separately for all three domains, and for both the quality level and the improvement of performance. The incentive for quality level was set thrice as high as the one for the improvement of performance. For reimbursement, quality scores were divided into seven levels. A practice with a quality score in the lowest group was not supposed to receive a bonus. The additional payment grew proportionally for each extra group. The bonus aimed at was on average 5% to 10% of the practice income. CONCLUSIONS: Designing a P4P program for primary care with involvement of the target users gave us an insight into their motives, which can help others who need to discuss similar programs. The resulting program is in line with target users' views and assessments of relevance and applicability. This may enhance their commitment to the program as was indicated by the growing number of voluntary participants after a successfully performed field test during the procedure. The elements of our framework can be very helpful for others who are developing or evaluating a P4P program

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning
    • 

    corecore