55,848 research outputs found

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    Extended Scaling for the high dimension and square lattice Ising Ferromagnets

    Full text link
    In the high dimension (mean field) limit the susceptibility and the second moment correlation length of the Ising ferromagnet depend on temperature as chi(T)=tau^{-1} and xi(T)=T^{-1/2}tau^{-1/2} exactly over the entire temperature range above the critical temperature T_c, with the scaling variable tau=(T-T_c)/T. For finite dimension ferromagnets temperature dependent effective exponents can be defined over all T using the same expressions. For the canonical two dimensional square lattice Ising ferromagnet it is shown that compact "extended scaling" expressions analogous to the high dimensional limit forms give accurate approximations to the true temperature dependencies, again over the entire temperature range from T_c to infinity. Within this approach there is no cross-over temperature in finite dimensions above which mean-field-like behavior sets in.Comment: 6 pages, 6 figure

    Development and application of a non-Gaussian atmospheric turbulence model for use in flight simulators

    Get PDF
    A method is described for generating time histories which model the frequency content and certain non-Gaussian probability characteristics of atmospheric turbulence including the large gusts and patchy nature of turbulence. Methods for time histories using either analog or digital computation are described. A STOL airplane was programmed into a 6-degree-of-freedom flight simulator, and turbulence time histories from several atmospheric turbulence models were introduced. The pilots' reactions are described

    Internal dissipation of a polymer

    Full text link
    The dynamics of flexible polymer molecules are often assumed to be governed by hydrodynamics of the solvent. However there is considerable evidence that internal dissipation of a polymer contributes as well. Here we investigate the dynamics of a single chain in the absence of solvent to characterize the nature of this internal friction. We model the chains as freely hinged but with localized bond angles and 3-fold symmetric dihedral angles. We show that the damping is close but not identical to Kelvin damping, which depends on the first temporal and second spatial derivative of monomer position. With no internal potential between monomers, the magnitude of the damping is small for long wavelengths and weakly damped oscillatory time dependent behavior is seen for a large range of spatial modes. When the size of the internal potential is increased, such oscillations persist, but the damping becomes larger. However underdamped motion is present even with quite strong dihedral barriers for long enough wavelengths.Comment: 6 pages, 8 figure

    High efficiency coherent optical memory with warm rubidium vapour

    Get PDF
    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory

    Storage and Manipulation of Light Using a Raman Gradient Echo Process

    Full text link
    The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the Λ\Lambda-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.Comment: 26 pages, 13 figure

    X,Y,Z-Waves: Extended Structures in Nonlinear Lattices

    Get PDF
    Motivated by recent experimental and theoretical results on optical X-waves, we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles or stones, in the 2D and 3D cases, respectively). First, we study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices. The predicted patterns are relevant to a variety of physical settings, such as Bose-Einstein condensates in deep optical lattices, lattices built of microresonators, photorefractive crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure

    Comparison of the prognostic value of measures of the tumor inflammatory cell infiltrate and tumor-associated stroma in patients with primary operable colorectal cancer

    Get PDF
    The aim of the present study was to compare the clinical utility of two measures of the inflammatory cell infiltrate - a H&E-based assessment of the generalised inflammatory cell infiltrate (the Klintrup-Mäkinen (KM) grade), and an immunohistochemistry-based assessment of combined CD3+ and CD8+ T-cell density (the “Immunoscore”), in conjunction with assessment of the tumor stroma percentage (TSP) in patients undergoing resection of stage I-III colorectal cancer (CRC). 246 patients were identified from a prospectively maintained database of CRC resections in a single surgical unit. Assessment of KM grade and TSP was performed using full H&E sections. CD3+ and CD8+ T-cell density was assessed on full sections and the Immunoscore calculated. KM grade and Immunoscore were strongly associated (P<0.001). KM grade stratified cancer-specific survival (CSS) from 88% to 66% (P=0.002) and Immunoscore from 93% to 61% (P<0.001). Immunoscore further stratified survival of patients independent of KM grade from 94% (high KM, Im4) to 60% (low KM, Im0/1). Furthermore, TSP stratified survival of patients with a weak inflammatory cell infiltrate (low KM: from 75% to 47%; Im0/1: from 71% to 38%, both P<0.001) but not those with a strong inflammatory infiltrate. On multivariate analysis, only Immunoscore (HR 0.44, P<0.001) and TSP (HR 2.04, P<0.001) were independently associated with CSS. These results suggest that the prognostic value of an immunohistochemistry-based assessment of the inflammatory cell infiltrate is superior to H&E-based assessment in patients undergoing resection of stage I-III CRC. Furthermore, assessment of the tumor-associated stroma, using TSP, further improves prediction of outcome
    • …
    corecore