983 research outputs found
Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs
The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14–18 h after lung infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14–18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C-reactive protein, haptoglobin, fibrinogen, pig major acute phase protein, and transferrin in peripheral lymphoid tissues
On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH() + NH()
We present a detailed analysis of the role of the magnetic dipole-dipole
interaction in cold and ultracold collisions. We focus on collisions between
magnetically trapped NH molecules, but the theory is general for any two
paramagnetic species for which the electronic spin and its space-fixed
projection are (approximately) good quantum numbers. It is shown that dipolar
spin relaxation is directly associated with magnetic-dipole induced avoided
crossings that occur between different adiabatic potential curves. For a given
collision energy and magnetic field strength, the cross-section contributions
from different scattering channels depend strongly on whether or not the
corresponding avoided crossings are energetically accessible. We find that the
crossings become lower in energy as the magnetic field decreases, so that
higher partial-wave scattering becomes increasingly important \textit{below} a
certain magnetic field strength. In addition, we derive analytical
cross-section expressions for dipolar spin relaxation based on the Born
approximation and distorted-wave Born approximation. The validity regions of
these analytical expressions are determined by comparison with the NH + NH
cross sections obtained from full coupled-channel calculations. We find that
the Born approximation is accurate over a wide range of energies and field
strengths, but breaks down at high energies and high magnetic fields. The
analytical distorted-wave Born approximation gives more accurate results in the
case of s-wave scattering, but shows some significant discrepancies for the
higher partial-wave channels. We thus conclude that the Born approximation
gives generally more meaningful results than the distorted-wave Born
approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold
Quantum Matter - Achievements and Prospects (2011
The role of Hall diffusion in the magnetically threaded thin accretion discs
We study role of the Hall diffusion in the magnetic star-disc interaction. In
a simplified steady state configuration, the total torque is calculated in
terms of the fastness parameter and a new term because of the Hall diffusion.
We show the total torque reduces as the Hall term becomes more significant.
Also, the critical fastness parameter (at which the total torque is zero)
reduces because of the Hall diffusion.Comment: Accepted for publication in Astrophysics and Space Scienc
Polarizing the Dipoles
We extend the massless dipole formalism of Catani and Seymour, as well as its
massive version as developed by Catani, Dittmaier, Seymour and Trocsanyi, to
arbitrary helicity eigenstates of the external partons. We modify the real
radiation subtraction terms only, the primary aim being an improved efficiency
of the numerical Monte Carlo integration of this contribution as part of a
complete next-to-leading order calculation. In consequence, our extension is
only applicable to unpolarized scattering. Upon summation over the helicities
of the emitter pairs, our formulae trivially reduce to their original form. We
implement our extension within the framework of Helac-Phegas, and give some
examples of results pertinent to recent studies of backgrounds for the LHC. The
code is publicly available. Since the integrated dipole contributions do not
require any modifications, we do not discuss them, but they are implemented in
the software.Comment: 20 pages, 4 figures, Integrated dipoles implemented for massless and
massive case
Soft gluons in Higgs plus two jet production
We investigate the effects of an all order QCD resummation of soft gluon
emissions for Higgs boson production in association with two hard jets. We
consider both the gluon-gluon fusion and weak boson fusion processes and show
how to resum a large part of the leading logarithms in the jet veto scale. Our
resummation improves on previous analyses which also aim to include the effects
of multiple soft gluon radiation. In addition we calculate the interference
between weak boson fusion and gluon-gluon fusion and find that it is small.Comment: 15 pages and 5 figure
On observability of Renyi's entropy
Despite recent claims we argue that Renyi's entropy is an observable
quantity. It is shown that, contrary to popular belief, the reported domain of
instability for Renyi entropies has zero measure (Bhattacharyya measure). In
addition, we show the instabilities can be easily emended by introducing a
coarse graining into an actual measurement. We also clear up doubts regarding
the observability of Renyi's entropy in (multi--)fractal systems and in systems
with absolutely continuous PDF's.Comment: 18 pages, 1 EPS figure, REVTeX, minor changes, accepted to Phys. Rev.
Phenomenological glass model for vibratory granular compaction
A model for weakly excited granular media is derived by combining the free
volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the
phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem.
Phys. 43, 139 (1965)]. This is made possible by relating the granular
excitation parameter \Gamma, defined as the peak acceleration of the driving
pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The
resulting master equation is formally identical to that of Bouchaud's trap
model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results
are shown to compare favourably with a range of known experimental behaviour.
This includes the logarithmic densification and power spectrum of fluctuations
under constant \eta, the annealing curve when \eta is varied cyclically in
time, and memory effects observed for a discontinuous shift in \eta. Finally,
we discuss the physical interpretation of the model parameters and suggest
further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR
Primordial nucleosynthesis with a varying fine structure constant: An improved estimate
We compute primordial light-element abundances for cases with fine structure
constant alpha different from the present value, including many sources of
alpha dependence neglected in previous calculations. Specifically, we consider
contributions arising from Coulomb barrier penetration, photon coupling to
nuclear currents, and the electromagnetic components of nuclear masses. We find
the primordial abundances to depend more weakly on alpha than previously
estimated, by up to a factor of 2 in the case of ^7Li. We discuss the
constraints on variations in alpha from the individual abundance measurements
and the uncertainties affecting these constraints. While the present best
measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise
by adjusting alpha and the universal baryon density, no value of alpha allows
all three to be accommodated simultaneously without consideration of systematic
error. The combination of measured abundances with observations of acoustic
peaks in the cosmic microwave background favors no change in alpha within the
uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere
Review of progress in Fast Ignition
Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 12(5), 057305, 2005 and may be found at http://dx.doi.org/10.1063/1.187124
- …