1,900 research outputs found

    Understanding Christian Perfection and its Struggle with Antinomianism

    Get PDF
    Every so often, a professor at Asbury Theological Seminary will notice a current student with exceptional promise. The Asbury Journal wants to help highlight the work of rising academics by publishing works from such students. This paper is an example of such a work, brought to the attention of the editor by Dr. Larry Wood. Much of the confusion regarding John Wesley’s phrase, Christian perfection, comes from the western tendency to define “perfection” as a state of infallibility (from the Latin perfectio) rather than a process of spiritual maturing based upon the Greek word for perfection, teleios (Matthew 5:48). Misunderstandings are further perpetuated when the moral law of God is conflated with the ceremonial and civil laws of the Old Testament. This error has led to a revival of antinomianism, justification without sanctification, which was the very issue that John Wesley and John Fletcher strove against in their own day

    The role of the hedgehog signalling pathway in acute myeloid leukaemia

    Get PDF
    Acute myeloid leukaemia (AML) encompasses a group of aggressive haematological neoplasms. It is a cancer stem cell (CSC) disorder. The Hedgehog (Hh) signalling pathway is one of the self-renewal pathways, highly conserved across species and important in determining stem cell fate, affecting a number of clinically important downstream targets including the Bcl-2 family. Abnormal Hh signalling has been associated with a diverse range of human malignancies. In myeloid malignancies, Hh signalling has been found to be vital in the maintenance and expansion of the CSC. Primary immotile cilia regulate canonical Hh signal transduction. These highly specialised organelles are present in single-celled eukaryotes through to humans, with defective primary cilia expression being linked to disease. It is unclear whether haematopoietic cells, normal or malignant, express primary cilia and the role the Hh pathway plays in the pathophysiology of AML. We sought to answer these questions, and further, to determine whether the Hh signalling pathway represented a therapeutic target in AML. Analysis of primary human AML mononuclear cells (MNCs) (n=76) showed the Hh pathway to be deregulated. SMO was significantly deregulated (p10% of cells by immunohistochemistry (IHC) on formalin fixed paraffin embedded (FFPE) primary human bone marrow trephines (BMTs) compared to none of our normal controls (n=10) (p<0.0001). GLI-1 expression was independent of SMO and PTCH-1. SHH was significantly down-regulated (p<0.001) within the blast population whilst secreted SHH, measured by enzyme-linked immunosorbant assay, was up-regulated suggesting paracrine activity. Impaired post-translational modification of SHH was demonstrated with protein located within the nuclei by IHC and immunocytochemistry (ICC). Nuclear expression of SHH was limited to primitive (CD34+) haematopoietic cells and absent from mature haematopoietic (CD14+, CD15+) cells. This correlated with a 20-fold reduction in HHAT, the acetyltransferase involved in Hh processing, in normal primitive haematopoietic cells compared to normal MNCs (p<0.01). There was no correlation between subtype, mutational profile or clinical outcome and any of the components of the Hh pathway. Primary immotile cilia were identified in all AML (n=23), and 20% of normal (n=10) primary human FFPE BMTs by ICC. Primary cilia were not identified in AML cell lines (n=7) or primitive (n=4) or mature haematopoietic cells (n=6) isolated from peripheral blood, suggesting they are lost once cells migrate from the bone marrow (BM) microenvironment. In vitro, SMO inhibition with 20μM cyclopamine reduced cell proliferation by trypan blue exclusion in select, genetically diverse AML cell lines (HL-60, Kasumi-1, KG1a, MOLM-13, MV4-11, OCI-AML3 and THP-1). No change in early or late apoptosis was seen in HL-60, KG1a, MV4-11, OCI-AML3 and THP-1 by flow cytometry (FACS). In contrast an increase in the number of dead cells by trypan blue exclusion was seen in Kasumi-1 (p<0.01) and MOLM-13 (p<0.05) with apoptosis confirmed by FACS (both p<0.05). Culture of the OCI-AML3 cell line with cyclopamine led to cell cycle arrest with an increase in G0-G1 cells (p<0.05), and a 3-fold reduction in cell division by CFSE (p=ns); striking morphological changes were seen with an increase in cytoplasm, granules and vacuoles and loss of nucleoli, with FACS analysis demonstrating increased expression of CD11b (p<0.001) and CD11c (p<0.0001) consistent with a more mature phenotype. Early haematopoietic markers NAB2, GATA1, EGR2, SCL, IRF8 and EGR1 were down-regulated whilst PU1, GCSF and MPO involved in differentiation and maturation were up-regulated (p=ns) in cyclopamine treated cells. Colony forming cell (CFC) assays showed a statistically significant reduction in the more pluripotent CFU-GM (p=0.006) colonies and an increase in omnipotent CFU-G (p=0.013) colonies following culture with cyclopamine 20μM. There is extensive evidence supporting Bcl-2 is altered in malignancy; its role in AML cell maintenance and survival, is well recognised. Further, Bcl-2 is a key downstream target of the Hh signalling pathway. Complete linkage analysis found key members of the Bcl-2 family and cell cycle regulators to cluster with components of the Hh signalling pathway. Sensitivity to the BH3 mimetic ABT-199 was not solely dependent on the expression of Bcl-2, rather a complex interplay between the pro-apoptotic and anti-apoptotic family members. Targeting Bcl-2 had a variable effect on KG1a, MOLM-13, MV4-11, OCI-AML3 and THP-1 cells; combination treatment with ABT-199 and Ara-C showed a highly synergistic effect on cell death in MOLM-13 cells (Chou-Talalay CI2 (range 2-70) for all dose combinations). We show the Hh signalling pathway to be deregulated in AML, expression of components of the pathway changing with myeloid maturation. We demonstrate primary cilia on haematopoietic cells within the BM, with an increased frequency observed in AML. Their absence when cells migrate from the BM fits with their function and suggests a ‘switching off’ of canonical signalling on maturation. In the absence of primary cilia, we show the Hh pathway remains active, suggesting a role for non-canonical signalling in AML. Pharmacological inhibition led to both apoptosis and differentiation; preliminary results suggest the effect is dependent upon the degree of SMO inhibition. We believe further work is required to determine the role of the Hh signalling pathway in normal and malignant haematopoiesis but that our data, considered especially in context with other recently published studies provides a rationale to continue to explore SMO or downstream Bcl-2 pathway inhibition as potential therapies in AML

    Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor treated CML stem cells

    Get PDF
    Treatment of chronic myelogenous leukemia (CML) with BCR-ABL tyrosine kinase inhibitors (TKI) fails to eliminate leukemia stem cells (LSC). Patients remain at risk for relapse, and additional approaches to deplete CML LSC are needed to enhance the possibility of discontinuing TKI treatment. We have previously reported that expression of the pivotal proinflammatory cytokine interleukin-1 (IL-1) is increased in CML bone marrow (BM). We show here that CML LSC demonstrated increased expression of the IL-1 receptors, IL-1RAP and IL- 1R1, and enhanced sensitivity to IL-1-induced NF-KB signaling compared to normal stem cells. Treatment with recombinant IL-1 receptor antagonist (IL-1RA) inhibited IL-1 signaling in CML LSC and inhibited growth of CML LSC. Importantly, the combination of IL-1RA with TKI resulted in significantly greater inhibition of CML LSC compared with TKI alone. Our studies also suggest that IL-1 signaling contributes to overexpression of inflammatory mediators in CML LSC, suggesting that blocking IL-1 signaling could modulate the inflammatory milieu. We conclude that IL-1 signaling contributes to maintenance of CML LSC following TKI treatment, and that IL- 1 blockade with IL-1RA enhances elimination of TKI-treated CML LSC. These results provide a strong rationale for further exploration of anti-IL-1 strategies to enhance LSC elimination in CML

    Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury

    Get PDF
    West CR, Goosey-Tolfrey VL, Campbell IG, Romer LM. Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. J Appl Physiol 117: 36–45, 2014. First published May 22, 2014; doi:10.1152/japplphysiol.00218.2014.—We asked whether elastic binding of the abdomen influences respiratory mechanics during wheelchair propulsion in athletes with cervical spinal cord injury (SCI). Eight Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) performed submaximal and maximal incremental exercise tests on a treadmill, both with and without abdominal binding. Measurements included pulmonary function, pressure-derived indices of respiratory mechanics, operating lung volumes, tidal flow-volume data, gas exchange, blood lactate, and symptoms. Residual volume and functional residual capacity were reduced with binding (77 18 and 81 11% of unbound, P 0.05), vital capacity was increased (114 9%, P 0.05), whereas total lung capacity was relatively well preserved (99 5%). During exercise, binding introduced a passive increase in transdiaphragmatic pressure, due primarily to an increase in gastric pressure. Active pressures during inspiration were similar across conditions. A sudden, sustained rise in operating lung volumes was evident in the unbound condition, and these volumes were shifted downward with binding. Expiratory flow limitation did not occur in any subject and there was substantial reserve to increase flow and volume in both conditions. V ˙ O2 was elevated with binding during the final stages of exercise (8 –12%, P 0.05), whereas blood lactate concentration was reduced (16 –19%, P 0.05). V ˙ O2/heart rate slopes were less steep with binding (62 35 vs. 47 24 ml/beat, P 0.05). Ventilation, symptoms, and work rates were similar across conditions. The results suggest that abdominal binding shifts tidal breathing to lower lung volumes without influencing flow limitation, symptoms, or exercise tolerance. Changes in respiratory mechanics with binding may benefit O2 transport capacity by an improvement in central circulatory function.This article has been made available through the Brunel Open Access Publishing Fund

    Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors.

    Get PDF
    Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning.EaStCHEM, NHS Lothian, Jamie King Cancer Research FundThis is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C6AN01032

    Race and the space in between: Practitioner reflections on anti-racist practice in one Froebelian early years setting

    Get PDF
    The rise of ‘Black Lives Matters’ has brought to the fore a need to unsettle early years praxis that positions race as separate from the individual, as a problem to be solved through the tokenistic provisioning of resources. In this paper, we explore how a team of early years practitioners were able to bridge the space between themselves and the multicultural community in which they worked. An interpretative onto-epistemology supported the crafting of the research design as a case study that provided insight into multiple meanings through participants’ narratives during weekly informal anti-racist reflective meetings, focus group discussions and individual interviews. “Political correctness”, social justice and children’s rights emerged that highlighted the importance of intra-actions arising between practitioners, their history, society and the environment. Consequently, new conceptualisations of race and anti-racist praxis emerged that transformed their practice and their way of being in the world

    The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis

    Get PDF
    Summary: Expression of the initiator methionine tRNA (tRNAi Met) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi Met expression levels influence tumor progression. We have found that tRNAi Met expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi Met in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi Met contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi Met gene (2+tRNAi Met mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi Met mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi Met mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi Met significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi Metoverexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl- 3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi Met-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi Met mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi Met levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis

    Targeted SERS nanosensors measure physicochemical gradients and free energy changes in live 3D tumor spheroids.

    Get PDF
    Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function. The magnitude of the redox potential gradient can be quantified as a free energy difference (ΔG) and used as a measurement of MTS viability. We found that by delivering different doses of radiotherapy to MTS we could correlate loss of ΔG with increasing therapeutic dose. In addition, we found that resistance to drug therapy was indicated by an increase in ΔG. This robust and reproducible technique allows interrogation of an in vitro tumor-model's bioenergetic response to therapy, indicating its potential as a tool for therapy development.Leverhulme Trust (Grant ID: RPG-2012-680), Jamie King Cancer Research FundThis is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C6NR06031

    Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)

    Full text link
    The Kepler mission discovered 2842 exoplanet candidates with 2 years of data. We provide updates to the Kepler planet candidate sample based upon 3 years (Q1-Q12) of data. Through a series of tests to exclude false-positives, primarily caused by eclipsing binary stars and instrumental systematics, 855 additional planetary candidates have been discovered, bringing the total number known to 3697. We provide revised transit parameters and accompanying posterior distributions based on a Markov Chain Monte Carlo algorithm for the cumulative catalogue of Kepler Objects of Interest. There are now 130 candidates in the cumulative catalogue that receive less than twice the flux the Earth receives and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen candidates meeting both criteria, roughly doubling the number of candidate Earth analogs. A majority of planetary candidates have a high probability of being bonafide planets, however, there are populations of likely false-positives. We discuss and suggest additional cuts that can be easily applied to the catalogue to produce a set of planetary candidates with good fidelity. The full catalogue is publicly available at the NASA Exoplanet Archive.Comment: Accepted for publication, ApJ
    • …
    corecore