42 research outputs found
Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method
Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn1–140) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn1–139 and Ac-α-syn1–103) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA)
Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice
Background: Alzheimer’s disease (AD) brain shows an ongoing inflammatory condition and non-steroidal antiinflammatories
diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and antiinflammatory
agents with therapeutic potential.
Methods: We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein
(APP) mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the
drinking water during 4 months) on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose
(18FDG) uptake by positron emission tomography (PET).
Results: Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month
administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice
cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG
uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP
immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density
of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both
cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-a mRNA expression
found in the AD model. Increased cortical b-amyloid (Ab) levels were significantly reduced in the mouse model by
both cannabinoids. Noteworthy both cannabinoids enhanced Ab transport across choroid plexus cells in vitro.
Conclusions: In summary we have shown that chronically administered cannabinoid showed marked beneficial
effects concomitant with inflammation reduction and increased Ab clearanceThis work was supported by the Spanish Ministry of Science and
Technology (SAF 2005-02845 to M.L.C). A.M.M-M. was recipient a fellowship
from the Ministry of Education and Scienc
ATP-binding cassette (ABC) transporters in normal and pathological lung
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
Interference-free superposition of nonzero order light modes : Functionalized optical landscapes
In this paper, we utilize the incoherent superposition of nonzero order light modes. We show that this approach brings an additional degree of freedom to the generation of optical fields and notably the formation of superpositions that are otherwise unattainable through the use of refractive or diffractive optical elements and coherent or incoherent light sources. We employ this technique in two exemplary cases: first to create a field with tunable orbital angular momentum whose spatial intensity distribution remains unchanged and second to form an unusual type of "nondiffracting" light beam.Publisher PDFPeer reviewe
Wavefront corrected light sheet microscopy in turbid media
This project was supported by the UK Engineering and Physical Sciences Research Council.Light sheet microscopy is a powerful method for three-dimensional imaging of large biological specimens. However, its imaging ability is greatly diminished by sample scattering and aberrations. Optical clearing, Bessel light modes, and background rejection have been employed in attempts to circumvent these deleterious effects. We present an in situ wavefront correction that offers a major advance by creating an “optimal” light sheet within a turbid sample. Crucially, we show that no tissue clearing or specialized sample preparation is required, and clear improvements in image quality and depth resolution are demonstrated both in Gaussian and Bessel beam-based light sheet modalities.Publisher PDFPeer reviewe
Optical aberration compensation in a multiplexed optical trapping system
In this paper we discuss optical aberrations within a multiplexed optical trapping system. We analyze two of the most powerful methods for optical trap multiplexing: time-shared beam steering and holographic beam shaping in a tandem system with an acousto-optic deflector and spatial light modulator. We show how to isolate and correct for the aberrations introduced by these individual optical components using the spatial light modulator and demonstrate theenhancement this provides to optical trapping
Three-dimensional particle imaging by wavefront sensing
We present two methods for three-dimensional particle metrology from a single two-dimensional view. The techniques are based on wavefront sensing where the three-dimensional location of a particle is encoded into a single image plane. The first technique is based on multiplanar imaging, and the second produces three-dimensional location information via anamorphic distortion of the recorded images. Preliminary results show that an uncertainty of 8 mu m in depth can be obtained for low-particle density over a thin plane, and an uncertainty of 30 mu m for higher particle density over a 10 mm deep volume. (c) 2006 Optical Society of America.</p