54,968 research outputs found

    Improvement of maneuver aerodynamics by spanwise blowing

    Get PDF
    Spanwise blowing was used to test a generalized wind-tunnel model to investigate component concepts in order to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on performance, stability, and control at high angles of attack and subsonic speeds. Test data were obtained in the Langley high speed 7 by 10 foot tunnel at free stream Mach numbers up to 0.50 for a range of model angles of attack, jet momentum coefficients, and leading and trailing edge flap deflection angles. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack

    Effects of spanwise blowing on the surface pressure distribution and vortex-lift characteristics of a trapezoidal wing-strake configuration

    Get PDF
    The effects of spanwise blowing on the surface pressures of a 44 deg swept trapezoidal wing-strake configuration were measured. Wind tunnel data were obtained at a free stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and nozzle chordwise location. Results showed that spanwise blowing delayed the leading edge vortex breakdown to larger span distances and increased the lifting pressures. Vortex lift was achieved at span stations immediately outboard of the strake-wing junction with no blowing, but spanwise blowing was necessary to achieve vortex lift at increased span distances. Blowing on the wing in the presence of the strake was not as effective as blowing on the wing alone. Spanwise blowing increased lift throughout the angle-of-attack range, improved the drag polars, and extended the linear pitching moment to higher values of lift. The leading edge suction analogy can be used to estimate the effects of spanwise blowing on the aerodynamic characteristics

    Self-recording portable soil penetrometer

    Get PDF
    A lightweight portable penetrometer for testing soil characteristics is described. The penetrometer is composed of a handle, data recording, and probe components detachably joined together. The data recording component has an easily removed recording drum which rotates according to the downward force applied on the handle, and a stylus means for marking the drum along its height according to the penetration depth of probe into the soil

    Technical management techniques for identification and control of industrial safety and pollution hazards

    Get PDF
    Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management

    A technology development program for large space antennas

    Get PDF
    The design and application of the offset wrap rib and the maypole (hoop/column) antenna configurations are described. The NASA mission model that generically categorizes the classes of user requirements, as well as the methods used to determine critical technologies and requirements are discussed. Performance estimates for the mesh deployable antenna selected for development are presented

    The design, development, and flight test results of the Boeing 737 aircraft antennas for the ICAO demonstration of the TRSB microwave landing system

    Get PDF
    The Research Support Flight System, a modified Boeing 737, was used to evaluate the performance of several aircraft antennas and locations for the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS). These tests were conducted at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey on December 18, 1975. The flight tests measured the signal strength and all pertinent MLS data during a straight-in approach, a racetrack approach, and ICAO approach profiles using the independent antenna-receiver combinations simultaneously on the aircraft. Signal drop-outs were experienced during the various approaches but only a small percentage could be attributed to antenna pattern effects

    High-performance thermionic converter Quarterly progress report, 13 Nov. 1965 - 13 Feb. 1966

    Get PDF
    Stability and optimization parameters of cesium vapor thermionic converters studied in high performance long life equipment fabrication projec

    Phase diagram for a Bose-Einstein condensate moving in an optical lattice

    Full text link
    The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5 recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott insulator(MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable phases was observed.Comment: 4 figure
    • …
    corecore