287 research outputs found
Approaching the new : a center for the research and performance of contemporary music
Thesis (M. Arch.)--Massachusetts Institute of Technology, Dept. of Architecture, 1989.Includes bibliographical references (p. 66-68).This thesis examines the idea that the spatial experience of a place can make the activity of being in the presence of a new art form more understandable, more meaningful and more powerful. The premise is that contemporary art is significant for it reflects the goals and spirit of an era, and that it is important for us all to be conscious of and to participate in that spirit. The vehicle for this thesis is the design of a center for the research and performance of contemporary music. It is a place where researchers can study , composers compose, musicians perform and audience observe. And here, each of these individuals will experience a new form of an old art. The form and the experience of moving through the building is intended to bring these individuals, especially the audience, closer to the experience of the new.by Campbell H. Ellsworth.M.Arch
Complex social contagion makes networks more vulnerable to disease outbreaks
Social network analysis is now widely used to investigate the dynamics of infectious disease spread. Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of complex contagion that requires social reinforcement. Using network simulations that model health behavior and infectious disease spread, we find that under otherwise identical conditions, the process by which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic variability results from differences in the topology within susceptible communities that arise during the health behavior spreading process, which in turn depends on the topology of the overall social network. Our findings point to the importance of health behavior spread in predicting and controlling disease outbreaks
Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling
This paper investigates multiwavelength retrievals of median equivolumetric drop diameter D(sub 0) suitable for drizzle and light rain, through collocated 355-/527-nm Micropulse Lidar Network (MPLNET) observations collected during precipitation occurring 9 May 2012 at the Goddard Space Flight Center (GSFC) project site. By applying a previously developed retrieval technique for infrared bands, the method exploits the differential backscatter by liquid water at 355 and 527 nm for water drops larger than approximately 50 micrometers. In the absence of molecular and aerosol scattering and neglecting any transmission losses, the ratio of the backscattering profiles at the two wavelengths (355 and 527 nm), measured from light rain below the cloud melting layer, can be described as a color ratio, which is directly related to D(sub 0). The uncertainty associated with this method is related to the unknown shape of the drop size spectrum and to the measurement error. Molecular and aerosol scattering contributions and relative transmission losses due to the various atmospheric constituents should be evaluated to derive D(sub 0) from the observed color ratio profiles. This process is responsible for increasing the uncertainty in the retrieval. Multiple scattering, especially for UV lidar, is another source of error, but it exhibits lower overall uncertainty with respect to other identified error sources. It is found that the total error upper limit on D(sub 0) approaches 50%. The impact of this retrieval for long-term MPLNET monitoring and its global data archive is discussed
Recommended from our members
Natural selection favoring more transmissible HIV detected in United States molecular transmission network.
HIV molecular epidemiology can identify clusters of individuals with elevated rates of HIV transmission. These variable transmission rates are primarily driven by host risk behavior; however, the effect of viral traits on variable transmission rates is poorly understood. Viral load, the concentration of HIV in blood, is a heritable viral trait that influences HIV infectiousness and disease progression. Here, we reconstruct HIV genetic transmission clusters using data from the United States National HIV Surveillance System and report that viruses in clusters, inferred to be frequently transmitted, have higher viral loads at diagnosis. Further, viral load is higher in people in larger clusters and with increased network connectivity, suggesting that HIV in the United States is experiencing natural selection to be more infectious and virulent. We also observe a concurrent increase in viral load at diagnosis over the last decade. This evolutionary trajectory may be slowed by prevention strategies prioritized toward rapidly growing transmission clusters
Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data
Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft
Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets
Overview of MPLNET Version 3 Cloud Detection
The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights
The NASA Micro Pulse Lidar Network (MPLNET): Introduction of the New Version 3 Release
The NASA Micro-Pulse Lidar Network (MPLNET) is a global federated network of polarized Micro-Pulse Lidar (MPL) systems running continuously. MPLNET began in 2000, and there have been over 70 sites deployed worldwide, with 24 sites currently active and a few more planned over the next year. Seven of the long-term sites have 10+ years of data, and many more have 5+ years. Most sites are co-located with AERONET providing joint data on column and vertically resolved aerosol and cloud information. This presentation will introduce our new Version 3 MPLNET data. All sites in the network now feature eye-safe polarized backscatter MPL instruments, providing information on attenuated backscatter and particle shape. In addition to change with our signal data, we have an enhanced cloud product suite, a new PBL height product, and inclusion of the new AERONET lunar aerosol optical depth into MPLNET aerosol retrievals. A new quality flag process will be used to better describe all data products. Finally, a new data portal will provide near-real-time (NRT) access to all data products, including new quality assured NRT L1.5 products. Custom products developed for model specific applications will also be provided
Arctic experiment for ICESat/GLAS ground validation with a Micro-Pulse Lidar at Ny-Alesund, Svalbard
A Micro-Pulse Lidar (MPL) has been operated in Ny-Alesund, Svalbard (78°55\u27N, 11°56\u27E, 0.010 km msl) to collect zenith scattering profiles of aerosols and clouds since 1998. The Ice, Cloud, and land Elevation Satellite (ICESat) was launched by NASA in January 2003 with a single payload instrument, the Geoscience Laser Altimeter System (GLAS), designed for active remote sensing of the atmosphere as well as ice sheet height change in the cryosphere. Overpass experiments for ground validation of the ICESat/GLAS atmospheric measurements were performed in 2003 and 2004. Two case-studies comparing lidar measurements from space-borne GLAS and ground-based MPL in the Arctic are described here for a geometrically thick but optically thin cloud and a geometrically thin but optically thick cloud. The result validates the basic procedure for cloud signal processing and attenuation correction of the GLAS data
- …