53,216 research outputs found

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    High efficiency coherent optical memory with warm rubidium vapour

    Get PDF
    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory

    Storage and Manipulation of Light Using a Raman Gradient Echo Process

    Full text link
    The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the Λ\Lambda-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.Comment: 26 pages, 13 figure

    Extended Scaling for the high dimension and square lattice Ising Ferromagnets

    Full text link
    In the high dimension (mean field) limit the susceptibility and the second moment correlation length of the Ising ferromagnet depend on temperature as chi(T)=tau^{-1} and xi(T)=T^{-1/2}tau^{-1/2} exactly over the entire temperature range above the critical temperature T_c, with the scaling variable tau=(T-T_c)/T. For finite dimension ferromagnets temperature dependent effective exponents can be defined over all T using the same expressions. For the canonical two dimensional square lattice Ising ferromagnet it is shown that compact "extended scaling" expressions analogous to the high dimensional limit forms give accurate approximations to the true temperature dependencies, again over the entire temperature range from T_c to infinity. Within this approach there is no cross-over temperature in finite dimensions above which mean-field-like behavior sets in.Comment: 6 pages, 6 figure

    Dissecting financial markets: Sectors and states

    Full text link
    By analyzing a large data set of daily returns with data clustering technique, we identify economic sectors as clusters of assets with a similar economic dynamics. The sector size distribution follows Zipf's law. Secondly, we find that patterns of daily market-wide economic activity cluster into classes that can be identified with market states. The distribution of frequencies of market states shows scale-free properties and the memory of the market state process extends to long times (∼50\sim 50 days). Assets in the same sector behave similarly across states. We characterize market efficiency by analyzing market's predictability and find that indeed the market is close to being efficient. We find evidence of the existence of a dynamic pattern after market's crashes.Comment: 6 pages 4 figures. Additional information available at http://www.sissa.it/dataclustering/fin

    Development of the Motivational Interviewing Supervision and Training Scale

    Get PDF
    The movement to use empirically supported treatments has increased the need for researchers and supervisors to evaluate therapists’ adherence to and the quality with which they implement those interventions. Few empirically supported approaches exist for providing these types of evaluations. This is also true for motivational interviewing, an empirically supported intervention important in the addictions field. This study describes the development and psychometric evaluation of the Motivational Interviewing Supervision and Training Scale (MISTS), a measure intended for use in training and supervising therapists implementing motivational interviewing. Satisfactory interrater reliability was found (generalizability coefficient p2 = .79), and evidence was found supporting the convergent and discriminant validity of the MISTS. Recommendations for refinement of the measure and future research are discussed

    X,Y,Z-Waves: Extended Structures in Nonlinear Lattices

    Get PDF
    Motivated by recent experimental and theoretical results on optical X-waves, we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles or stones, in the 2D and 3D cases, respectively). First, we study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices. The predicted patterns are relevant to a variety of physical settings, such as Bose-Einstein condensates in deep optical lattices, lattices built of microresonators, photorefractive crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure

    Silicon dendritic web material

    Get PDF
    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined
    • …
    corecore