294 research outputs found

    Two benthic diatoms, nanofrustulum shiloi and striatella unipunctata, encapsulated in alginate beads, influence the reproductive efficiency of paracentrotus lividus by modulating the gene expression

    Get PDF
    Physiological effects of algal metabolites is a key step for the isolation of interesting bioactive compounds. Invertebrate grazers may be fed on live diatoms or dried, pelletized, and added to compound feeds. Any method may reveal some shortcomings, due to the leaking of wound-activated compounds in the water prior to ingestion. For this reason, encapsulation may represent an important step of bioassay-guided fractionation, because it may assure timely preservation of the active compounds. Here we test the effects of the inclusion in alginate (biocompatible and non-toxic delivery system) matrices to produce beads containing two benthic diatoms for sea urchin Paracentrotus lividus feeding. In particular, we compared the effects of a diatom whose influence on P. lividus was known (Nanofrustulum shiloi) and those of a diatom suspected to be harmful to marine invertebrates, because it is often present in blooms (Striatella unipunctata). Dried N. shiloi and S. unipunctata were offered for one month after encapsulation in alginate hydrogel beads and the larvae produced by sea urchins were checked for viability and malformations. The results indicated that N. shiloi, already known for its toxigenic effects on sea urchin larvae, fully conserved its activity after inclusion in alginate beads. On the whole, benthic diatoms affected the embryogenesis of P. lividus, altering the expression of several genes involved in stress response, development, skeletogenesis and detoxification processes. Interactomic analysis suggested that both diatoms activated a similar stress response pathway, through the up-regulation of hsp60, hsp70, NF-κB, 14-3-3 ε and MDR1 genes. This research also demonstrates that the inclusion in alginate beads may represent a feasible technique to isolate diatom-derived bioactive compounds

    Hybrid lipid self-assembling nanoparticles for brain delivery of microRNA

    Get PDF
    Hybrid self-assembling nanoparticles (SANPs) have been previously designed as novel drug delivery system that overcomes stability issues following long-term storage and with an easy scale-up. This system has been successfully used to deliver anionic-charged agents, e.g. bisphosphonates, in different types of tumors, such glioblastoma (GBM). Here, SANPs were tested and optimized for the delivery of nucleic acids, in particular of a specific microRNA, e.g. miR603, used for its potential role in controlling the chemoresistance in different forms of cancer, e.g. (GBM). To this aim, SANPs with different lipids were prepared and characterized, in terms of size, polydispersity index, zeta potential, miRNA encapsulation, stability in BSA, serum and hemolytic activity. Then, SANPs were tested in vitro on two different cell lines of GBM. Finally, miRNA biodistribution was tested in vivo in an orthotopic model of GBM. The majority of the formulations showed good technological characteristics and were stable in BSA and serum with a low hemolytic activity. The intracellular uptake studies on GBM cell lines showed that SANPs allow to achieve a higher miRNA delivery compared to others transfection agents, e.g. lipofectamine. Finally, in vivo biodistribution studies in an orthotopic of GBM demonstrated that the optimized SANP formulations, were able to deliver miRNA in different organs, e.g. the brain

    Dysregulation of NF–Y splicing drives metabolic rewiring and aggressiveness in colon cancer

    Get PDF
    NF-Y is an evolutionarily conserved transcription factor that binds specifically to the CCAAT elements of eukaryotic genes, most of which frequently deregulated in cancer. NF-YA, the regulatory subunit of the NF-Y complex, has two isoforms generated by alternative splicing, NF-YAl and NF-YAs, which differ in the transactivation domain. Transcriptomic data from The Cancer Genome Atlas (TCGA) database highlighted a significant increase in the expression of NF-YAs at the expense of NF-YAl in colorectal cancer (CRC), compared to healthy tissues. Despite this, high NF-YAl levels predict lower patients’ survival and distinguish the mesenchymal molecular subtype CMS4, which is characterized by the worst prognosis. Through the analysis of 3D cellular models, we demonstrated that altered expression of genes related to extracellular matrix and epithelial-mesenchymal transition sustains enhanced migratory and invasive behavior of NF-YAl-transduced cells. Moreover, the integration of metabolomics, bioenergetics and transcriptional analyses demonstrated a direct role for NFYAl in metabolic flexibility of cancer cells that adjust their metabolism in response to environmental changes to potentiate migration. The zebrafish xenograft model confirmed the metastatic potential triggered by NF-YAl in CRC cells. Altogether, our data highlight the transcriptional role of NF-YAl in CRC aggressiveness and suggest splice-switching strategies to hinder NF-YAl-induced metastatic dissemination

    Design and development of topical liposomal formulations in a regulatory perspective

    Get PDF
    The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems. Graphical abstract: [Figure not available: see fulltext.

    Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    Get PDF
    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs

    Real-Life Clinical Data of Cabozantinib for Unresectable Hepatocellular Carcinoma

    Get PDF
    Introduction: Cabozantinib has been approved by the European Medicine Agency (EMA) for hepatocellular carcinoma (HCC) previously treated with sorafenib. Cabozantinib is also being tested in combination with immune checkpoint inhibitors in the frontline setting. Real-life clinical data of cabozantinib for HCC are still lacking. Moreover, the prognostic factors for HCC treated with cabozantinib have not been investigated. Methods: We evaluated clinical data and outcome of HCC patients who received cabozantinib in the legal context of named patient use in Italy. Results: Ninety-six patients from 15 centres received cabozantinib. All patients had preserved liver function (Child-Pugh A), mostly with an advanced HCC (77.1%) in a third-line setting (75.0%). The prevalence of performance status (PS) > 0, macrovascular invasion (MVI), extrahepatic spread, and alpha-fetoprotein (AFP) >400 ng/mL was 50.0, 30.2, 67.7, and 44.8%, respectively. Median overall survival (OS) and progression-free survival were 12.1 (95% confidence interval 9.4-14.8) and 5.1 (3.3-6.9) months, respectively. Most common treatment-related adverse events (AEs) were fatigue (67.7%), diarrhoea (54.2%), anorexia (45.8%), HFSR (43.8%), weight loss (24.0%), and hypertension (24.0%). Most common treatment-related Grade 3-4 AEs were fatigue (6.3%), HFSR (6.3%), and increased aminotransferases (6.3%). MVI, ECOG-PS > 0, and AFP >400 ng/mL predicted a worse OS. Discontinuation for intolerance and no new extrahepatic lesions at the progression were associated with better outcomes. Conclusions: In a real-life Western scenario (mostly in a third-line setting), cabozantinib efficacy and safety data were comparable with those reported in its registration trial. Data regarding the prognostic factors might help in patient selection and design of clinical trials

    Transarterial Chemoembolization for Hepatocellular Carcinoma in Clinical Practice: Temporal Trends and Survival Outcomes of an Iterative Treatment

    Get PDF
    Background: Transarterial chemoembolization (TACE) is one of the most frequently applied treatments for hepatocellular carcinoma (HCC) worldwide. In this study, we aimed at evaluating whether and how TACE application and repetition, as well as the related outcome, have changed over the last three decades in Italy. Methods: Data of 7,184 patients with HCC were retrieved from the Italian Liver Cancer (ITA.LI.CA) database. Patients were divided according to the period of diagnosis in six cohorts: P1 (1988–1993), P2 (1994–1998), P3 (1999–2004), P4 (2005–2009), P5 (2010–2014), and P6 (2015–2019). All the analyses were repeated in the overall patient population and in Barcelona Clinic Liver Cancer (BCLC) B patients, who are the subgroup of HCC patients originally supposed to receive TACE according to guidelines. TACE was defined as either the first or the main (more effective) treatment. Results: The proportion of patients receiving TACE as first or main therapy declined over time, and less than 50% of BCLC B patients were treated with chemoembolization from P3 onward. Conversely, TACE was widely used even outside the intermediate stage. Survival of TACE-treated patients progressively increased from P1 to P6. Although TACE was performed only once in the majority of patients, there was an increasing proportion of those receiving 2 or ≥3 treatments sessions over time. The overall survival (OS) of patients undergoing repeated treatments was significantly higher compared to those managed with a single TACE (median OS 40.0 vs. 65.0 vs. 71.8 months in 1, 2, and ≥3 TACE groups, respectively; p < 0.0001). However, after a first-line TACE, the adoption of curative therapies provided longer survival than repeating TACE (83.0 vs. 42.0 months; p < 0.0001), which in turn was associated with better outcomes compared to systemic therapies or best supportive care (BSC). Conclusions: Despite a decline in the percentage of treated patients over time, TACE has still an important role in the management of HCC patients. The survival of TACE-treated patients gradually improved over time, probably due to a better patient selection. Iterative TACE is effective, but an upward shift to curative therapies provides better outcomes while transition to systemic therapies and BSC leads to a worse prognosis

    Randomized phase II study with two gemcitabine- and docetaxel-based combinations as first-line chemotherapy for metastatic non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Docetaxel and gemcitabine combinations have proven active for the treatment of non-small cell lung cancer (NSCLC). The aim of the present study was to evaluate and compare two treatment schedules, one based on our own preclinical data and the other selected from the literature.</p> <p>Methods</p> <p>Patients with stage IV NSCLC and at least one bidimensionally-measurable lesion were eligible. Adequate bone marrow reserve, normal hepatic and renal function, and an ECOG performance status of 0 to 2 were required. No prior chemotherapy was permitted. Patients were randomized to arm A (docetaxel 70 mg/m<sup>2</sup>on day 1 and gemcitabine 900 mg/m<sup>2 </sup>on days 3–8, every 3 weeks) or B (gemcitabine 900 mg/m2 on days 1 and 8, and docetaxel 70 mg/m2 on day 8, every 3 weeks).</p> <p>Results</p> <p>The objective response rate was 20% (95% CI:10.0–35.9) and 18% (95% CI:8.6–33.9) in arms A and B, respectively. Disease control rates were very similar (54% in arm A and 53% in arm B). No differences were noted in median survival (32 vs. 33 weeks) or 1-year survival (33% vs. 35%). Toxicity was mild in both treatment arms.</p> <p>Conclusion</p> <p>Our results highlighted acceptable activity and survival outcomes for both experimental and empirical schedules as first-line treatment of NSCLC, suggesting the potential usefulness of drug sequencing based on preclinical models.</p> <p>Trial registration number</p> <p>IOR 162 02</p
    • …
    corecore