8,127 research outputs found
Constraint Damping in First-Order Evolution Systems for Numerical Relativity
A new constraint suppressing formulation of the Einstein evolution equations
is presented, generalizing the five-parameter first-order system due to Kidder,
Scheel and Teukolsky (KST). The auxiliary fields, introduced to make the KST
system first-order, are given modified evolution equations designed to drive
constraint violations toward zero. The algebraic structure of the new system is
investigated, showing that the modifications preserve the hyperbolicity of the
fundamental and constraint evolution equations. The evolution of the
constraints for pertubations of flat spacetime is completely analyzed, and all
finite-wavelength constraint modes are shown to decay exponentially when
certain adjustable parameters satisfy appropriate inequalities. Numerical
simulations of a single Schwarzschild black hole are presented, demonstrating
the effectiveness of the new constraint-damping modifications.Comment: 11 pages, 5 figure
The Lazarus project: A pragmatic approach to binary black hole evolutions
We present a detailed description of techniques developed to combine 3D
numerical simulations and, subsequently, a single black hole close-limit
approximation. This method has made it possible to compute the first complete
waveforms covering the post-orbital dynamics of a binary black hole system with
the numerical simulation covering the essential non-linear interaction before
the close limit becomes applicable for the late time dynamics. To determine
when close-limit perturbation theory is applicable we apply a combination of
invariant a priori estimates and a posteriori consistency checks of the
robustness of our results against exchange of linear and non-linear treatments
near the interface. Once the numerically modeled binary system reaches a regime
that can be treated as perturbations of the Kerr spacetime, we must
approximately relate the numerical coordinates to the perturbative background
coordinates. We also perform a rotation of a numerically defined tetrad to
asymptotically reproduce the tetrad required in the perturbative treatment. We
can then produce numerical Cauchy data for the close-limit evolution in the
form of the Weyl scalar and its time derivative
with both objects being first order coordinate and tetrad invariant. The
Teukolsky equation in Boyer-Lindquist coordinates is adopted to further
continue the evolution. To illustrate the application of these techniques we
evolve a single Kerr hole and compute the spurious radiation as a measure of
the error of the whole procedure. We also briefly discuss the extension of the
project to make use of improved full numerical evolutions and outline the
approach to a full understanding of astrophysical black hole binary systems
which we can now pursue.Comment: New typos found in the version appeared in PRD. (Mostly found and
collected by Bernard Kelly
Three-family oscillations using neutrinos from muon beams at very long baseline
The planned LBL experiments will be able to prove the hypothesis of flavor
oscillation between muon and tau neutrinos. We explore the possibility of a
second generation long baseline experiment at very long baseline, i.e. L in the
range 5000-7000 km. This distance requires intense neutrino beams that could be
available from very intense muon beams as those needed for colliders.
Such baselines allow the study of neutrino oscillations with with neutrinos of energy , i.e.
above tau threshold. Moreover, matter effects inside the Earth could lead to
observable effects in oscillations. These effects are
interchanged between neutrinos and antineutrinos, and therefore they can be
tested by comparing the oscillated spectra obtained running the storage ring
with positive and negative muons.Comment: 14 pages, 4 figure
Spinning-black-hole binaries: The orbital hang up
We present the first fully-nonlinear numerical study of the dynamics of
highly spinning black-hole binaries. We evolve binaries from quasicircular
orbits (as inferred from Post-Newtonian theory), and find that the last stages
of the orbital motion of black-hole binaries are profoundly affected by their
individual spins. In order to cleanly display its effects, we consider two
equal mass holes with individual spin parameters S/m^2=0.757, both aligned and
anti-aligned with the orbital angular momentum (and compare with the spinless
case), and with an initial orbital period of 125M. We find that the aligned
case completes three orbits and merges significantly after the anti-aligned
case, which completes less than one orbit. The total energy radiated for the
former case is ~7% while for the latter it is only ~2%. The final Kerr hole
remnants have rotation parameters a/M=0.89 and a/M=0.44 respectively, showing
the unlikeliness of creating a maximally rotating black hole out of the merger
of two spinning holes.Comment: 5 pages, 5 figures, revtex4. New version accepted for publication in
Physical Review D Rapid Communication
Perturbations of the Kerr spacetime in horizon penetrating coordinates
We derive the Teukolsky equation for perturbations of a Kerr spacetime when
the spacetime metric is written in either ingoing or outgoing Kerr-Schild form.
We also write explicit formulae for setting up the initial data for the
Teukolsky equation in the time domain in terms of a three metric and an
extrinsic curvature. The motivation of this work is to have in place a
formalism to study the evolution in the ``close limit'' of two recently
proposed solutions to the initial value problem in general relativity that are
based on Kerr-Schild slicings. A perturbative formalism in horizon penetrating
coordinates is also very desirable in connection with numerical relativity
simulations using black hole ``excision''.Comment: 8 pages, RevTex, 2 figures, final version to appear in CQ
Making use of geometrical invariants in black hole collisions
We consider curvature invariants in the context of black hole collision
simulations. In particular, we propose a simple and elegant combination of the
Weyl invariants I and J, the {\sl speciality index} . In the context
of black hole perturbations provides a measure of the size of the
distortions from an ideal Kerr black hole spacetime. Explicit calculations in
well-known examples of axisymmetric black hole collisions demonstrate that this
quantity may serve as a useful tool for predicting in which cases perturbative
dynamics provide an accurate estimate of the radiation waveform and energy.
This makes particularly suited to studying the transition from
nonlinear to linear dynamics and for invariant interpretation of numerical
results.Comment: 4 pages, 3 eps figures, Revte
Invited papers from the international meeting on 'New Frontiers in Numerical Relativity' (Albert Einstein Institute, Potsdam, Germany, 17-21 July 2006)
Traditionally, frontiers represent a treacherous terrain to venture into, where hidden obstacles are present and uncharted territories lie ahead. At the same time, frontiers are also a place where new perspectives can be appreciated and have often been the cradle of new and thriving developments. With this in mind and inspired by this spirit, the Numerical Relativity Group at the Albert Einstein Institute (AEI) organized a `New Frontiers in Numerical Relativity' meeting on 17–21 July 2006 at the AEI campus in Potsdam, Germany
The flavor of neutrinos in muon decays at a neutrino factory and the LSND puzzle
The accurate prediction of the neutrino beam produced in muon decays and the
absence of opposite helicity contamination for a particular neutrino flavor
make a future neutrino factory the ideal place to look for the lepton flavor
violating (LFV) decays of the kind \mu^+\ra e^+\nuebar\numu and lepton number
violating (LNV) processes like \mu^-\ra e^-\nue\numu. Excellent sensitivities
can be achieved using a detector capable of muon and/or electron identification
with charge discrimination. This would allow to set experimental limits that
improve current ones by more than two orders of magnitude and test the
hypothesis that the LSND excess is due to such anomalous decays, rather than
neutrino flavor oscillations in vacuum.Comment: 19 pages, 4 figure
- …
