15,181 research outputs found

    XMM-Newton observations of two transient millisecond X-ray pulsars in quiescence

    Full text link
    We report on XMM-Newton observations of two X-ray transient millisecond pulsars (XRTMSPs). We detected XTE J0929-314 with an unabsorbed luminosity of \~7x10^{31} erg/s. (0.5-10 keV) at a fiducial distance of 10 kpc. The quiescent spectrum is consistent with a simple power law spectrum. The upper limit on the flux from a cooling neutron star atmosphere is about 20% of the total flux. XTE J1807-294 instead was not detected. We can put an upper limit on the source quiescent 0.5-10 keV unabsorbed luminosity <4x10^{31} erg/s at 8 kpc. These observations strenghten the idea that XRTMSPs have quiescent luminosities significantly lower than classical neutron star transients.Comment: 4 pages including 1 figures. Accepted for publication in A&A Letter

    The optical counterpart of IGR J00291+5934 in quiescence

    Full text link
    The recent (December 2004) discovery of the sixth accretion-powered millisecond X-ray pulsar IGR J00291+5934 provides a very good chance to deepen our knowledge of such systems. Although these systems are well studied at high energies, poor informations are available for their optical/NIR counterparts during quiescence. Up to now, only for SAX J1808.4-3658, the first discovered system of this type, we have a secure multiband detection of its optical counterpart in quiescence. Among the seven known system IGR J00291+5934 is the one that resembles SAX J1808.4-3658 more closely. With the Italian 3.6 m TNG telescope, we have performed deep optical and NIR photometry of the field of IGR J00291+5934 during quiescence in order to look for the presence of a variable counterpart. We present here the first multiband (VRIJHVRIJH) detection of the optical and NIR counterpart of IGR J00291+5934 in quiescence as well as a deep upper limit in the KK-band. We obtain an optical light curve that shows variability consistent with a sinusoidal modulation at the known 2.46 hr orbital period and present evidence for a strongly irradiated companion.Comment: 6 pages, 5 figures. Accepted for publication in Astronomy and Astrophysic

    CAD-CAE methods to support restoration and museum exhibition of bronze statues: the “Principe Ellenistico”

    Get PDF
    Ancient bronze statues mainly require material integrity assessment and restoration. Restoration may include also the update of the museum exhibition, defining new structural frames and fragment re-composition to preserve the statue and improve the interpretation of the original aspect. This paper proves how engineering methods (such as Finite Element Analysis, Computer Aided Design modelling, Reverse Engineering) may assist cultural heritage experts and restorers in these tasks. It presents the activities made together with the Museo Nazionale Romano and the Istituto Superiore per la Conservazione e il Restauro, on the so-called “Principe Ellenistico” (Hellenistic Prince). This bronze was found in pieces (body, left arm and right leg), at the end of 19th century during an excavation made in Rome. No visual or reference sources can say its origin and its final posture was defined by restorers at the end of the 19th century according to their hypothesis and studies. In the 20th century, a further restoration was made on the critical areas of the surface, together with some structural improvement of the inner frame. Nowadays, after a review of its position inside the Museum, new experimental and numerical analyses have been carried out to better understand surface weakness and correct left arm positionin

    On the detection of very high redshift Gamma Ray Bursts with Swift

    Full text link
    We compute the probability to detect long Gamma Ray Bursts (GRBs) at z>5 with Swift, assuming that GRBs form preferentially in low-metallicity environments. The model fits well both the observed BATSE and Swift GRB differential peak flux distribution and is consistent with the number of z>2.5 detections in the 2-year Swift data. We find that the probability to observe a burst at z>5 becomes larger than 10% for photon fluxes P<1 ph s^{-1} cm^{-2}, consistent with the number of confirmed detections. The corresponding fraction of z>5 bursts in the Swift catalog is ~10%-30% depending on the adopted metallicity threshold for GRB formation. We propose to use the computed probability as a tool to identify high redshift GRBs. By jointly considering promptly-available information provided by Swift and model results, we can select reliable z>5 candidates in a few hours from the BAT detection. We test the procedure against last year Swift data: only three bursts match all our requirements, two being confirmed at z>5. Other three possible candidates are picked up by slightly relaxing the adopted criteria. No low-z interloper is found among the six candidates.Comment: 5 pages, 2 figures, MNRAS in pres

    The optical to gamma-ray emission of the Crab pulsar: a multicomponent model

    Full text link
    We present a multicomponent model to explain the features of the pulsed emission and spectrum of the Crab Pulsar, on the basis of X and gamma-ray observations obtained with BeppoSAX, INTEGRAL and CGRO. This model explains the evolution of the pulse shape and of the phase-resolved spectra, ranging from the optical/UV to the GeV energy band, on the assumption that the observed emission is due to more components. The first component, C_O, is assumed to have the pulsed double-peaked profile observed at the optical frequencies, while the second component, C_X, is dominant in the interpeak and second peak phase regions. The spectra of these components are modelled with log-parabolic laws and their spectral energy distributions have peak energies at 12.2 and 178 keV, respectively. To explain the properties of the pulsed emission in the MeV-GeV band, we introduce two more components, C_Ogamma and C_Xgamma, with phase distributions similar to those of C_O and C_X and log-parabolic spectra with the same curvature but peak energies at about 300 MeV and 2 GeV. This multicomponent model is able to reproduce both the broadband phase-resolved spectral behaviour and the changes of the pulse shape with energy. We also propose some possible physical interpretations in which C_O and C_X are emitted by secondary pairs via a synchrotron mechanism while C_Ogamma and C_Xgamma can originate either from Compton scattered or primary curvature photons.Comment: 14 pages, 16 figures; accepted by Astronomy and Astrophysic

    X-ray absorption towards high-redshift sources: probing the intergalactic medium with blazars

    Get PDF
    The role played by the intergalactic medium (IGM) in the X-ray absorption towards high-redshift sources has recently drawn more attention in spectral analysis studies. Here, we study the X-ray absorption towards 15 flat-spectrum radio quasars at z>2z>2, relying on high counting statistic (10000\gtrsim10\,000 photons) provided by XMM-Newton, with additional NuSTAR (and simultaneous Swift-XRT) observations when available. Blazars can be confidently considered to have negligible X-ray absorption along the line of sight within the host galaxy, likely swept by the kpc-scale relativistic jet. This makes our sources ideal for testing the absorption component along the IGM. Our new approach is to revisit the origin of the soft X-ray spectral hardening observed in high-z blazars in terms of X-ray absorption occurring along the IGM, with the help of a low-z sample used as comparison. We verify that the presence of absorption in excess of the Galactic value is the preferred explanation to explain the observed hardening, while intrinsic energy breaks, predicted by blazars' emission models, can easily occur out of the observing energy band in most sources. First, we perform an indirect analysis comparing the inferred amount of absorption in excess of the Galactic value with a simulated IGM absorption contribution, that increases with redshift and includes both a minimum component from diffuse IGM metals, and the additional contribution of discrete denser intervening regions. Then, we directly investigate the warm-hot IGM with a spectral model on the best candidates of our sample, obtaining an average IGM density of n0=1.010.72+0.53×107n_0=1.01^{+0.53}_{-0.72}\times10^{-7} cm3^{-3} and temperature of log(T/K)=6.452.12+0.51\log(T/\text{K})=6.45^{+0.51}_{-2.12}. A more dedicated study is currently beyond reach, but our results can be used as a stepping stone for future more accurate analysis, involving Athena.Comment: 32 pages, 7 figures. Accepted, to be published in A&

    Kilohertz quasi-periodic oscillations in low mass X-ray binary sources and their relation with the neutron star magnetic field

    Get PDF
    Starting from the observation that kilohertz Quasi Period Oscillations (kHz QPO) occur in a very narrow range of X-ray luminosities in neutron star low mass X-ray binaries, we try to link the kHz QPO observability to variations of the neutron star magnetospheric radius, in response to changing mass inflow rate. At low luminosities, the drop off of kHz QPOs activity may be explained by the onset of the centrifugal barrier, when the magnetospheric radius reaches the corotation radius. At the opposite side, at higher luminosities, the magnetospheric radius may reach the neutron star and the vanishing of the magnetosphere may led to the stopping of the kHz QPOs activity. If we apply these constraints, the magnetic fields of atoll (B ~ 0.3-1 10^8 G for Aql X-1) and Z (B ~ 1-8 10^8 G for Cyg X-2) sources can be derived. These limits naturally apply in the framework of beat frequency models but can also work in the case of general relativistic models.Comment: 4 pages (emulateapj macro), 1 figure. Accepted for publication in ApJ Letter

    Missing hard states and regular outbursts: the puzzling case of the black hole candidate 4U 1630-472

    Get PDF
    4U 1630-472 is a recurrent X-ray transient classified as a black-hole candidate from its spectral and timing properties. One of the peculiarities of this source is the presence of regular outbursts with a recurrence period between 600 and 730 d that has been observed since the discovery of the source in 1969. We report on a comparative study on the spectral and timing behaviour of three consecutive outbursts occurred in 2006, 2008 and 2010. We analysed all the data collected by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and the Rossi X-ray timing Explorer (RXTE) during these three years of activity. We show that, in spite of having a similar spectral and timing behaviour in the energy range between 3 and 30 keV, these three outbursts show pronounced differences above 30 keV. In fact, the 2010 outburst extends at high energies without any detectable cut-off until 150-200 keV, while the two previous outbursts that occurred in 2006 and 2008 are not detected at all above 30 keV. Thus, in spite of a very similar accretion disk evolution, these three outbursts exhibit totally different characteristics of the Compton electron corona, showing a softening in their evolution rarely observed before in a low mass X-ray binary hosting a black hole. We argue the possibility that the unknown perturbation that causes the outbursts to be equally spaced in time could be at the origin of this particular behaviour. Finally we describe several possible scenarios that could explain the regularity of the outbursts, identifying the most plausible, such as a third body orbiting around the binary system.Comment: April 2015: accepted for publication in MNRAS. May 2015: in pres

    Virtual prototyping of medieval weapons for historical reconstruction of siege scenarios starting from topography and archaeological investigations

    Get PDF
    Chronicles of sieges to castles or fortresses, using “machinae”, can often be found in historical sources. Moreover, archaeological excavations of castles or fortresses has brought to light rocks or projectiles whose carving suggests a military usage. Nevertheless, chronicles and discoveries alone, are seldom enough to propose a faithful reconstruction of these machines. Therefore, the aim of this research is the development of methodologies for reconstructing virtual scenarios of sieges, starting from the scarce information available. In order to achieve it, a procedure for the virtual reconstruction of the siege machine has been set up, focusing on typology and dimensions of the machines, also investigating possible fire positions according to topography. The entire procedure has been developed using the siege of Cervara di Roma’s Rocca as a case study. Late medieval chronicles (end of 13th Century) report the siege brought by the papal army in order to restore the jurisdiction on the Cervara’s stronghold, following the insurrection of a group of vassals headed by a monk named Pelagio. The discovery, in the area of the Rocca, of a stone that could have been used as a projectile confirms what reported. The proposed methodology is composed of two parts. The first one is connected to the study of the “internal ballistics”, to understand the performances and to build virtual models of siege machines. The second part is the study of the “external ballistics”, then to the positioning and shooting ability of possible machines, analysing the topography of the area. In this paper, we present the feasibility of this methodology through the preliminary results achieved correlating internal and external ballistics

    Gamma Ray Bursts from the early Universe: predictions for present-day and future instruments

    Full text link
    Long Gamma Ray Bursts (GRBs) constitute an important tool to study the Universe near and beyond the epoch of reionization. We delineate here the characteristics of an 'ideal' instrument for the search of GRBs at z>6-10. We find that the detection of these objects requires soft band detectors with a high sensitivity and moderately large FOV. In the light of these results, we compare available and planned GRB missions, deriving conservative predictions on the number of high-z GRBs detectable by these instruments along with the maximum accessible redshift. We show that the Swift satellite will be able to detect various GRBs at z>6, and likely at z>10 if the trigger threshold is decreased by a factor of ~2. Furthermore, we find that INTEGRAL and GLAST are not the best tool to detect bursts at z>6: the former being limited by the small FOV, and the latter by its hard energy band and relatively low sensitivity. Finally, future missions (SVOM, EDGE, but in particular EXIST) will provide a good sample of GRBs at z>6 in a few years of operation.Comment: 6 pages, 2 figures, MNRAS in pres
    corecore