112 research outputs found

    The future of coral reefs subject to rapid climate change: Lessons from natural extreme environments

    Get PDF
    Global climate change and localized anthropogenic stressors are driving rapid declines in coral reef health. In vitro experiments have been fundamental in providing insight into how reef organisms will potentially respond to future climates. However, such experiments are inevitably limited in their ability to reproduce the complex interactions that govern reef systems. Studies examining coral communities that already persist under naturally-occurring extreme and marginal physicochemical conditions have therefore become increasingly popular to advance ecosystem scale predictions of future reef form and function, although no single site provides a perfect analog to future reefs. Here we review the current state of knowledge that exists on the distribution of corals in marginal and extreme environments, and geographic sites at the latitudinal extremes of reef growth, as well as a variety of shallow reef systems and reef-neighboring environments (including upwelling and CO 2 vent sites). We also conduct a synthesis of the abiotic data that have been collected at these systems, to provide the first collective assessment on the range of extreme conditions under which corals currently persist. We use the review and data synthesis to increase our understanding of the biological and ecological mechanisms that facilitate survival and success under sub-optimal physicochemical conditions. This comprehensive assessment can begin to: (i) highlight the extent of extreme abiotic scenarios under which corals can persist, (ii) explore whether there are commonalities in coral taxa able to persist in such extremes, (iii) provide evidence for key mechanisms required to support survival and/or persistence under sub-optimal environmental conditions, and (iv) evaluate the potential of current sub-optimal coral environments to act as potential refugia under changing environmental conditions. Such a collective approach is critical to better understand the future survival of corals in our changing environment. We finally outline priority areas for future research on extreme and marginal coral environments, and discuss the additional management options they may provide for corals through refuge or by providing genetic stocks of stress tolerant corals to support proactive management strategies

    Mass coral bleaching of P. versipora in Sydney Harbour driven by the 2015ā€“2016 heatwave

    Full text link
    Ā© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. High-latitude coral communities are distinct from their tropical counterparts, and how they respond to recent heat wave events that have decimated tropical reefs remains unknown. In Australia, the 2016 El NiƱo resulted inĀ the largest global mass coral bleaching event to date, reachingĀ as far south as Sydney Harbour (~ 34Ā°S). Coral bleaching was observed for the first time (affecting ca., 60% of all corals) as sea surface temperatures in Sydney Harbour remained > 2Ā Ā°C above the long-term mean summer maxima, enabling us to examine whether high-latitude corals bleached in a manner described for tropical corals. Responses of theĀ geographically cosmopolitan Plesiastrea versipora and southerly restricted Coscinaraea mcneilli were contrasted across two harbour sites, both in situ and among samples-maintained ex situ in aquaria continually supplied with Sydney Harbour seawater. While both coral taxa hosted the same species of microalgal endosymbiont (Breviolum spp; formerly clade B), only P. versipora bleachedĀ both in situ and ex situ via pronounced losses of endosymbiont cells. Both species displayed very different metabolic responses (growth, photosynthesis, respiration and calcification) and bleaching susceptibilities under elevated temperatures. Bacterial microbiome profiling, however, revealed a convergence of bacterial community composition across coral species throughout the bleaching. Corals species found in temperate regions, including the generalist P. versipora, will therefore likely be highly susceptible to future change as heat waves grow in frequency and severity unless their thermal thresholds increase. Our observations provide further evidence that high-latitude systems are susceptible to community reorganisation under climate change

    A novel membrane inlet-infrared gas analysis (MI-IRGA) system for monitoring of seawater carbonate system

    Get PDF
    Increased atmospheric CO 2 concentrations are driving changes in ocean chemistry at unprecedented rates resulting in ocean acidification, which is predicted to impact the functioning of marine biota, in particular of marine calcifiers. However, the precise understanding of such impacts relies on an analytical system that determines the mechanisms and impact of elevated pCO 2 on the physiology of organisms at scales from species to entire communities. Recent work has highlighted the need within experiments to control all aspects of the carbonate system to resolve the role of different inorganic carbon species on the physiological responses observed across taxa in real-time. Presently however, there are limited options available for continuous quantification of physiological responses, coupled with real-time calculation of the seawater carbonate chemistry system within microcosm environments. Here, we describe and characterise the performance of a novel pCO 2 membrane equilibrium system (the Membrane Inlet Infra-Red Gas Analyser, MI-IRGA) integrated with a continuous pH and oxygen monitoring platform. The system can detect changes in the seawater carbonate chemistry and determine organism physiological responses, while providing the user with real-time control over the microcosm system. We evaluate the systems control, response time and associated error, and demonstrate the flexibility of the system to operate under field conditions and within a laboratory. We use the system to measure physiological parameters (photosynthesis and respiration) for the corals Pocillipora damicornis and Porites cylindrica; in doing so we present a novel dataset examining the interactive role of temperature, light and pCO 2 on the physiology of P. cylindrica

    Insights from extreme coral reefs in a changing world

    Full text link
    Ā© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. Coral reefs are one of the most biodiverse and economically important ecosystems in the world, but they are rapidly degrading due to the effects of global climate change and local anthropogenic stressors. Reef scientists are increasingly studying coral reefs that occur in marginal and extreme environments to understand how organisms respond to, and cope with, environmental stress, and to gain insight into how reef organisms may acclimate or adapt to future environmental change. To date, there have been more than 860 publications describing the biology and/or abiotic conditions of marginal and extreme reef environments, most of which were published within the past decade. These include systems characterized by unusually high, low, and/or variable temperatures (intertidal, lagoonal, high-latitude areas, and shallow seas), turbid or urban environments, acidified habitats, and mesophotic depth, and focus on reefs geographically spread throughout most of the tropics. The papers in this special issue of Coral Reefs, entitled Coral Reefs in a Changing World: Insights from Extremes, build on the growing body of literature on these unique and important ecosystems, providing a deeper understanding of the patterns and processes governing life in marginal reef systems, and the implications that these insights may have for the future of tropical coral reefs in our rapidly changing world

    Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments

    Full text link
    It has been proposed that an effective approach for predicting whether and how reef-forming corals persist under future climate change is to examine populations thriving in present day extreme environments, such as mangrove lagoons, where water temperatures can exceed those of reef environments by more than 3Ā°C, pH levels are more acidic (pH &amp;lt; 7.9, often below 7.6) and O2 concentrations are regularly considered hypoxic (&amp;lt;2 mg/L). Defining the physiological features of these ā€œextremeā€ corals, as well as their relationships with the, often symbiotic, organisms within their microbiome, could increase our understanding of how corals will persist into the future. To better understand coral-microbe relationships that potentially underpin coral persistence within extreme mangrove environments, we therefore conducted a 9-month reciprocal transplant experiment, whereby specimens of the coral Pocillopora acuta were transplanted between adjacent mangrove and reef sites on the northern Great Barrier Reef. Bacterial communities associated with P. acuta specimens native to the reef environment were dominated by Endozoicomonas, while Symbiodiniaceae communities were dominated by members of the Cladocopium genus. In contrast, P. acuta colonies native to the mangrove site exhibited highly diverse bacterial communities with no dominating members, and Symbiodiniaceae communities dominated by Durusdinium. All corals survived for 9 months after being transplanted from reef-to-mangrove, mangrove-to-reef environments (as well as control within environment transplants), and during this time there were significant changes in the bacterial communities, but not in the Symbiodiniaceae communities or their photo-physiological functioning. In reef-to-mangrove transplanted corals, there were varied, but sometimes rapid shifts in the associated bacterial communities, including a loss of ā€œcoreā€ bacterial members after 9 months where coral bacterial communities began to resemble those of the native mangrove corals. Bacterial communities associated with mangrove-to-reef P. acuta colonies also changed from their original composition, but remained different to the native reef corals. Our data demonstrates that P. acuta associated bacterial communities are strongly influenced by changes in environmental conditions, whereas Symbiodiniaceae associated communities remain highly stable.</jats:p

    Influence of routine computed tomography on predicted survival from blunt thoracoabdominal trauma

    Get PDF
    Item does not contain fulltextINTRODUCTION: Many scoring systems have been proposed to predict the survival of trauma patients. This study was performed to evaluate the influence of routine thoracoabdominal computed tomography (CT) on the predicted survival according to the trauma injury severity score (TRISS). PATIENTS AND METHODS: 1,047 patients who had sustained a high-energy blunt trauma over a 3-year period were prospectively included in the study. All patients underwent physical examination, conventional radiography of the chest, thoracolumbar spine and pelvis, abdominal sonography, and routine thoracoabdominal CT. From this group with routine CT, we prospectively defined a selective CT (sub)group for cases with abnormal physical examination and/or conventional radiography and/or sonography. Type and extent of injuries were recorded for both the selective and the routine CT groups. Based on the injuries found by the two different CT algorithms, we calculated the injury severity scores (ISS) and predicted survivals according to the TRISS methodology for the routine and the selective CT algorithms. RESULTS: Based on injuries detected by the selective CT algorithm, the mean ISS was 14.6, resulting in a predicted mortality of 12.5%. Because additional injuries were found by the routine CT algorithm, the mean ISS increased to 16.9, resulting in a predicted mortality of 13.7%. The actual observed mortality was 5.4%. CONCLUSION: Routine thoracoabdominal CT in high-energy blunt trauma patients reveals more injuries than a selective CT algorithm, resulting in a higher ISS. According to the TRISS, this results in higher predicted mortalities. Observed mortality, however, was significantly lower than predicted. The predicted survival according to MTOS seems to underestimate the actual survival when routine CT is used

    Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities

    Get PDF
    Background The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. Results We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4Ā° of latitude and summer mean temperature ranges from 26.6ā€‰Ā°C to 29.3ā€‰Ā°C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)ā€”a compartment particularly sensitive to environmental changeā€”varied significantly between sites, however for any given coral was species-specific. Conclusion The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia
    • ā€¦
    corecore