17 research outputs found

    Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site

    No full text
    The exocyst complex is involved in the final stages of exocytosis, when vesicles are targeted to the plasma membrane and dock. The regulation of exocytosis is vital for a number of processes, for example, cell polarity, embryogenesis, and neuronal growth formation. Regulation of the exocyst complex in mammals was recently shown to be dependent upon binding of the small G protein, Ral, to Sec5, a central component of the exocyst. This interaction is thought to be necessary for anchoring the exocyst to secretory vesicles. We have determined the structure of the Ral-binding domain of Sec5 and shown that it adopts a fold that has not been observed in a G protein effector before. This fold belongs to the immunoglobulin superfamily in a subclass known as IPT domains. We have mapped the Ral binding site on this domain and found that it overlaps with protein-protein interaction sites on other IPT domains but that it is completely different from the G protein-geranyl-geranyl interaction face of the Ig-like domain of the Rho guanine nucleotide dissociation inhibitor. This mapping, along with available site-directed mutagenesis data, allows us to predict how Ral and Sec5 may interact

    RLIP76, an effector of the GTPase Ral, interacts with the AP2 complex: involvement of the Ral pathway in receptor endocytosis

    No full text
    International audienceRLIP76 is a modular protein that was identified as a putative effector of Ral, a GTPase activated during Ras signaling. To explore further the contribution of the Ral-RLIP76 pathway to Ras signaling, we have looked for partners of RLIP76. Mu2, the medium chain of the AP2 complex is shown to interact with RLIP76. We show also that in vivo endogenous AP2 and RLIP76 form a complex and that this in vivo interaction is independent of cells being stimulated by a growth factor. Furthermore, RLIP76 differentiates AP2 from AP1 in vivo as RLIP76 differentiates mu2 from mu1 in vitro and in two hybrid assays. We show that activated Ral interferes with both tranferrin receptor endocytosis and epidermal growth factor (EGF) receptor endocytosis in HeLa cells. We propose a model where the Ral-RLIP76 pathway connects signal transduction and endocytosis through interaction on one hand between the Ras-Ral pathway and RLIP, on the other hand between RLIP and proteins belonging to the endocytotic machinery

    Effector recognition by the small GTP-binding proteins Ras and Ral

    No full text
    International audienceThe Ral effector protein RLIP76 (also called RIP/RalBP1) binds to Ral.GTP via a region that shares no sequence homology with the Ras-binding domains of the Ser/Thr kinase c-Raf-1 and the Ral-specific guanine nucleotide exchange factors. Whereas the Ras-binding domains have a similar ubiquitin-like structure, the Ral-binding domain of RLIP was predicted to comprise a coiled-coil region. In order to obtain more information about the specificity and the structural mode of the interaction between Ral and RLIP, we have performed a sequence space and a mutational analysis. The sequence space analysis of a comprehensive nonredundant assembly of Ras-like proteins strongly indicated that positions 36 and 37 in the core of the effector region are tree-determinant positions for all subfamilies of Ras-like proteins and dictate the specificity of the interaction of these GTPases with their effector proteins. Indeed, we could convert the specific interaction with Ras effectors and RLIP by mutating these residues in Ras and Ral. We therefore conclude that positions 36 and 37 are critical for the discrimination between Ras and Ral effectors and that, despite the absence of sequence homology between the Ral-binding and the Ras-binding domains, their mode of interaction is most probably similar

    Tyrosine Phosphorylation Regulates Alpha II Spectrin Cleavage by Calpain

    No full text
    Spectrins, components of the membrane skeleton, are implicated in various cellular functions. Understanding the diversity of these functions requires better characterization of the interacting domains of spectrins, such as the SH3 domain. Yeast two-hybrid screening of a kidney cDNA library revealed that the SH3 domain of αII-spectrin binds specifically isoform A of low-molecular-weight phosphotyrosine phosphatase (LMW-PTP). The αII-spectrin SH3 domain does not interact with LMW-PTP B or C nor does LMW-PTP A interact with the αI-spectrin SH3 domain. The interaction of spectrin with LMW-PTP A led us to look for a tyrosine-phosphorylated residue in αII-spectrin. Western blotting showed that αII-spectrin is tyrosine phosphorylated in vivo. Using mutagenesis on recombinant peptides, we identified the residue Y1176 located in the calpain cleavage site of αII-spectrin, near the SH3 domain, as an in vitro substrate for Src kinase and LMW-PTP A. This Y1176 residue is also an in vivo target for kinases and phosphatases in COS cells. Phosphorylation of this residue decreases spectrin sensitivity to calpain in vitro. Similarly, the presence of phosphatase inhibitors in cell culture is associated with the absence of spectrin cleavage products. This suggests that the Y1176 phosphorylation state could modulate spectrin cleavage by calpain and may play an important role during membrane skeleton remodeling

    RalB GTPase-Mediated Activation of the IÎşB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival

    Get PDF
    SummaryThe monomeric RalGTPases, RalA and RalB are recognized as components of a regulatory framework supporting tumorigenic transformation. Specifically, RalB is required to suppress apoptotic checkpoint activation, the mechanistic basis of which is unknown. Reported effector proteins of RalB include the Sec5 component of the exocyst, an octameric protein complex implicated in tethering of vesicles to membranes. Surprisingly, we find that the RalB/Sec5 effector complex directly recruits and activates the atypical IκB kinase family member TBK1. In cancer cells, constitutive engagement of this pathway, via chronic RalB activation, restricts initiation of apoptotic programs typically engaged in the context of oncogenic stress. Although dispensable for survival in a nontumorigenic context, this pathway helps mount an innate immune response to virus exposure. These observations define the mechanistic contribution of RalGTPases to cancer cell survival and reveal the RalB/Sec5 effector complex as a component of TBK1-dependent innate immune signaling

    STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes

    No full text
    STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context-dependent proximity-labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation-induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin-1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1-dependent cargo export regulation by phosphorylation of XPO1's C-terminal auto-inhibitory domain.status: publishe
    corecore